Типы меднения

Содержание:

Хромирование в домашних условиях

Химическая металлизация своими руками в домашних условиях. Гальваника в домашних условиях вещь вполне реальная, конечно, при соблюдении определённых требований. Из всех видов домашней гальваники хромировка является, пожалуй, самым сложным видом гальваностегии по двум причинам:

  • Техническая сложность процесса.
  • Крайняя опасность химических компонентов для здоровья.

Первая техническая сложность

Сложность хромирования состоит в том, что предъявляются очень жёсткие требования к режиму функционирования гальванической ванны. Малейшие отклонения от требуемой плотности тока, температуры и концентрации электролита приводят к резкому изменению качества хромового покрытия, вплоть до брака.

  • При температуре электролита от 30−60 градусов поверхность готового изделия будет блестящей.
  • Выше 60 градусов — хромовое покрытие будет иметь молочный оттенок.
  • Ниже 30 градусов — поверхность матовая.

От концентрации состава электролита хром меняет цвет, а вместе с цветом меняются и прочностные характеристики. Цвет меняется от обычного светлого, до темно-голубого, агатового, синего и, наконец, до практически чёрного. По мере изменения цвета меняется и прочность хромового покрытия. Самый мягкий хром имеет обычный светлый цвет, для его получения требуется комнатная температура и сила тока порядка 5 А/кв.дм. Самое прочное хромовое покрытие соответствует хрому чёрного цвета. Но для получения чёрного хрома необходима сила тока 100 А/кв.дм, что в условиях домашнего производства сделать технически невозможно.

Вторая техническая сложность

Вторая сложность состоит в том, что хром не может непосредственно соединяться со сталью, алюминием, чугуном или железом. Поэтому всегда перед хромированием проводят процесс никелирования. Часто с целью получения более качественного результата проводят несколько последовательных нанесений слоёв: никель, медь, снова никель и только в заключение наносят слой хрома.

При этом нужно иметь в виду, что само по себе хромовое покрытие обладает достаточно противоречивыми характеристиками. С одной стороны, хром обладает высокой механической прочностью (намного выше, чем у никеля), химической инертностью и очень ярким блеском. Но одновременно с этим он очень хрупок и обладает пористой структурой. Поэтому подложка из никеля для слоя хрома является необходимой даже в том случае, если хромирование осуществляется на поверхность металла, с которым у хрома хорошая сцепка, например, медь или латунь.

Опасность для здоровья

Основной компонент электролита для хромирования — оксид хрома (CrO3) или, как его ещё называют, хромовый ангидрид. Так уж получилось, что хромовый ангидрид является сильнейшим ядом и одновременно одним из самых сильных канцерогенов. Смертельная доза для человека при приёме внутрь составляет приблизительно 4−6 грамм, в зависимости от веса индивида. При попадании на открытые участки кожи чистого оксида хрома или его растворов возникают химические ожоги, которые затем переходят в дерматиты и экземы, с последующим перерождением в рак кожи.

Понятно, что такое «прекрасное» химическое вещество невозможно просто взять и купить в магазине хим. реактивов. Оборот хромового ангидрида жёстко регулируется государством и продажа разрешена только юридическим лицам, имеющим лицензию на соответствующий род деятельности.

Что такое обезжиривание поверхности?

Известно, что на поверхности изделий, поступающих в гальванику после изготовления и механической обработки всегда присутствуют загрязнения. Ими могут быть остатки полировальных паст, масложировые пятна, СОЖ, окалина, старая краска или покрытие, а также обычная грязь. Перед нанесением качественного гальванического покрытия все загрязнения требуется удалить. Очистка происходит с помощью обезжиривания и травления. Далее рассмотрим процесс обезжиривания металлических поверхностей подробнее.

Виды загрязнений, удаляемых обезжириванием, могут быть разного происхождения:

  • Минерального. К ним относятся минеральные масла, полировальные пасты, СОЖ. Особенность в том, что они не растворяются в воде, поэтому для их удаления целесообразно использовать органические растворители;
  • Растительного и животного. Растворяются только в водных обезжиривающих растворах. Остановимся на них подробнее.

Часто загрязнения носят комбинированный характер, а к жидкой фазе добавляются частички твердой — пыль, асфальты, карбены, оксиды и пр.

Полный цикл обезжиривания обычно включает в себя следующие стадии:

  • Обработка растворителями;
  • Химическое;
  • Электрохимическое обезжиривание.

Чистая обезжиренная поверхность стали выглядит следующим образом:

Технология меднения

Различают 2 типа медных электролитов: кислые и щелочные. В кислых электролитах нельзя получить прочно сцепленные медные покрытия на стальных и цинковых изделиях, так как в этом случае железо и цинк в контакте с медью растворяются — нарушается сцепление с покрытием. Для устранения этой особенности — необходимо первый тонкий слой меди (2—3 мкм) нанести в щелочном электролите, а в дальнейшем наращивать покрытие в более экономичном кислом электролите до заданной толщины. Цинковые изделия сложной формы меднить лучше всего в щелочных (цианистых) электролитах. Кислые электролиты меднения Наиболее распространены электролиты двух видов — сернокислые и борфтористоводородные. Наибольшее применение нашли сернокислые электролиты, отличающиеся простотой состава, устойчивостью и высоким выходом по току (до 100%). Перед меднением стальных деталей в кислых электролитах их предварительно меднят в цианистых электролитах или осаждают тонкий подслой никеля. Недостатком этих электролитов является невозможность непосредственного покрытия стальных и цинковых деталей вследствие контактного выделения меди, имеющей плохое сцепление с основным металлом, а также их незначительная рассеивающая способность и более грубая структура осадков по сравнению с другими электролитами. Щелочные электролиты меднения К щелочным электролитам меднения относятся цианистые, пирофосфатные и другие электролиты. Цианистые медные электролиты обладают высокой рассеивающей способностью, мелкокристаллической структурой осадков, возможностью непосредственного меднения стольных деталей. К недостаткам относятся низкая плотность тока и неустойчивость состава вследствие карбонизации свободного цианида под действием двуокиси углерода воздуха. Кроме того, цианистые электролиты характеризуются пониженным выходом по току (не более 60-70%)

Различные типы меднения

Меднение в домашних условиях могут выполнять даже новички в этом направлении. Чтобы получить качественное покрытие необходимо изучить все нюансы процедуры. Она может проводиться по одной из 2 технологий:

  1. Погружение в электролит. Заготовка погружается в жидкость и подается электроток. Обычно, используется в тех ситуациях, когда ее габариты не значительны.
  2. Без погружения в раствор. Более сложный процесс, но позволяющий достигать лучшего качества обмедненных поверхностей.

Во всех случаях необходимо подведение электричества, которое активизирует вещество.

Оптимальный метод выбирается в соответствии с поставленной целью:

  • Формирование защитных и декоративных покрытий. Зачастую происходит смешение с никелем, хромом и медью. Получаются прочные и надежные поверхности.
  • Защита при цементировании.
  • Реставрация изделий.

Рассмотрим подробнее каждый из вариантов.

Омеднение с помещением в электролит

Наиболее доступный способ обмеднения в быту. Необходимы:

  • Небольшого размера пластинки из меди.
  • Проволока для проведения тока.
  • Источник тока.
  • Устройство для регулирования и измерения тока.

Последовательность действий:

  1. Чтобы растворить медь используется обыкновенный электролит, свободно продающийся или легко готовящийся своими руками. Для приготовления следует делать смесь серной кислоты с дистиллированной водой в пропорциях 3 к 100 миллилитрам. Нужная смесь получается после добавления в него 20 г медного купороса.
  2. Деталь следует очистить щеткой и наждачкой, чтобы удалить оксидную пленку.
  3. Провести обезжиривание раствором соды и промыть.
  4. Подготовленная емкость заполняется электролитическим раствором.
  5. В емкости размещаются 2 пластинки, подключенные к токопроводящей проволоке. Меж ними помещается деталь, которой предполагается омеднение. Нужно проверить полное закрытие смесью и пластинок, и заготовки.
  6. Затем пластины подключаются к плюсовому полюсу источника, а заготовка садится на минус. Предварительно желательно подключать амперметр и реостат. Выставить диапазон тока до 15 мА на 1см2 площади поверхности изделия.
  7. Выдержать в течение 20 минут.
  8. Выключается питание, заготовка извлекается из раствора. В итоге получается тонкое покрытие из меди. Продолжительность процесса оказывает влияние на толщину напыления. Благодаря технологии можно добиваться слоя до 300 мкм и более.

Метод возможно применять для обновления алюминиевых вещей, используемых в быту. Например, столовая утварь из алюминия после омеднения обретет вторую молодость.

Омеднение без помещения в раствор

Метод не предполагает залитие детали жидкостью. Он прекрасно подходит обработки цинковых или алюминиевых изделий.

Последовательность действий:

  1. Необходим провод – многожильный, медный. Снять изоляцию. Одна сторона распушается, делая подобие кисточки. Можно сделать что-то вроде рукояти для большего комфорта в работе. Другой край провода подключается к положительному полюсу источника тока. Напряжение – не больше 6 Вольт.
  2. Вышеописанным методом подготавливается электролит с медным купоросом. Посуда может использоваться любого типа, но лучше подобрать ту, которая позволит беспроблемно погружать кисточку из провода. Обрабатываемая деталь очищается от загрязнений. После этого проводами садится на отрицательный полюс источника тока.
  3. Процедура проводится следующим образом. Распушенный край-кисточка время от времени помещается в раствор. Ей следует проводить вдоль заготовки, не прикасаясь к ней. Поверхность нужно смочить электролитическим раствором. Во время обработки за счет отрицательного заряда деталь будет подтягивать ионы меди, покрываясь ими.

Это меднение металла подойдет для габаритных вещей, которые затруднительно поместить в емкость.

Технология меднения

Порядок действий при нанесении покрытия:

Схема гальванического меднения

  • Надо удалить тонкую пленку окислов с поверхности детали, подлежащей обработке. Используется наждачная бумага, металлическая щетка или иные абразивные материалы. Необходимо действовать очень аккуратно, поскольку сильные повреждения металла останутся заметными. В идеале, поверхность должна быть отполирована.
  • Затем изделие тщательно промывается в горячем растворе кальцинированной соды. Это действие позволяет обезжирить поверхность.
  • Подготовленное изделие подключается к отрицательному электроду от источника питания и помещается в раствор электролита.
  • В раствор электролита опускаются медные пластины с присоединенным к ним положительным электродом от источника питания (анод). Необходимо следить, чтобы анод и катод не соприкасались. В идеале, расстояние между ними должно быть во всех участках одинаковым, но на практике этого сложно добиться.
  • Меднение металла производится в несколько приемов. Первый слой покрытия, полученный в течение нескольких минут, рекомендуется удалить и вновь промыть деталь в содовом растворе. Это усилит сцепление слоя омеднения с основным металлом. Деталь выдерживается в растворе около 20–30 минут. Толщина слоя покрытия может достигать 300 мкм.

Схема осаждения металла

Нередко бывает необходимо удалить слой покрытия с хромированных частей. Для этого на деталь подается отрицательный заряд, а на положительный электрод наматывается тряпочка, смоченная в растворе серной кислоты (5%). Ею протирается поверхность детали, слой хромирования снимается. При выполнении процедуры необходимо защищать кожу, органы зрения и дыхания от паров кислоты.

Зачем проводится меднение металлов

Меднением называют нанесение на разные материалы и изделия тончайшего слоя меди. Обычно толщина этого слоя составляет 1-300 мкм. Именно медь обладает рядом свойств, которые делают ее пригодной для данной манипуляции. Она пластична, отлично поддается полировке. Гальванический пласт на стали после выполнения меднения почти не имеет пор.

Кроме того, медь характеризуется высокой электропроводностью и легко паяется. При использовании высокочастотных сигналов наибольшая плотность тока приходится на медный слой (скин-эффект), а общее сопротивление снижается.

Области применения технологии меднения обширны:

  • создание промежуточного слоя перед хромированием и никелированием разных изделий (для снижения риска растрескивания при эксплуатации в сложных условиях);
  • применение в гальванопластике;
  • толстослойное покрытие сложных моделей и художественных образцов, производство копий разных изделий;
  • изготовление радиотехнических, электротехнических деталей — контактов, проводников, антенн, волноводов;
  • нанесение токопроводящего слоя на пластиковые изделия;
  • защита металлопроката, листового железа, профилей.

Расчет концентрации реактивов сернокислого электролита меднения

Определение концентрации серной кислоты 

Для определения концентрации серной кислоты используется метод титрования. Для анализа потребуются следующие приборы:  бюретка на 200 мл, пипетка на 1-2 мл., стеклянная палочка и два стеклянных стаканчика. Потребуются следующие реактивы: раствор 0,2н (нормальный раствор) гидроксида натрия NaOH или гидроксида калия KOH и 0,1%-ный раствор индикатора — метилового оранжевого. Нормальный раствор готовится по плотности гидроксида, например, при плотности гидроксида натрия равной 1,01 н. раствор будет равен 0,238.

Анализ начинают с отбора проб из разных мест гальванической ванны. Из колбы берут 20 мл электролита и разбавляют водой в два-три раза. В разбавленный электролит с помощью стеклянной палочки вносят 1 каплю индикатора и приступают к титрованию щелочью. Цвет раствора меняется с розового до желто-лимонного. Затем производится расчет содержания серной кислоты по формуле:

  • где x — количество свободной серной кислоты;
  • А — количество гидроксида, затраченного на титрование пробы, мл.
  • В — количество электролита, взятое для анализа, мл.
  • н. — нормальность раствора гидроксида.
  • 0,049 — коэффициент перерасчета на содержание серной кислоты.
  • 1000 — коэффициент перерасчета на 1 л.

Проведите титрование и внесите количество гидроксида (А) в форму расчета.

Определение содержания меди

Самый простой способ определения содержания меди в растворе сернокислого электролита основан на том, что плотность раствора сульфата меди и серной кислоты при одинаковой концентрации равны, а при их смешении плотность раствора не меняется. Таким образом, измерив плотность электролита при определенной температуре и зная содержание в растворе серной кислоты, можно определить количество сульфата меди. Потребуются следующие приборы: ареометр, термометр, цилиндр. Определите плотность раствора электролита при температуре 25С. и внесите данные в форму расчета.

Влияние концентрации исходных компонентов на качество гальванического покрытия

При недостаточной концентрации серной кислоты и (или) сульфата меди слой меди на поверхности основного металла имеет низкую прочность. Поверхность сыпучая, недостаточно гладкая и имеет ярко выраженную кристаллическую структуру. Добавление серной кислоты и сульфата меди по результатам анализа позволяет решить эту проблему. Если осадок меди имеет темный равномерный цвет, то скорее всего, помимо повышенной плотности тока причина заключается в недостаточной концентрации серной кислоты, т. к. серная кислота предупреждает образование на катоде окиси меди, которая имеет темный цвет и, внедряясь в отложение делает его шершавым.

  • Установку для гальванопластики в домашних условиях собрать несложно, оборудование и материалы для электрохимического осаждения меди находятся в…

  • Гальванопластика это раздел гальваники, изучающий методы получения копий предметов, выполненных с помощью гальванического осаждения металла на…

  • Металлизация диэлектриков — это целое направление гальваники. В процессе металлизации получают изделия из пластмасс композитных материалов или…

  • Расчет количества реактивов электролитов меднения в зависимости от рабочего объема гальванической емкости. Количество реактивов и режимы процессов…

  • В зависимости от требований, предъявляемых к покрываемым изделиям различают три вида гальванических покрытий – защитно-декоративные покрытия,…

Где применяется (назначение покрытия хромом)

  1. В промышленности многие изделия часто работают на износ, например, пресс-формы или поршневые цилиндры. Их изготавливают из углеродистой стали или нержавейки. Без покрытия такие пресс-формы быстро изнашиваются и подлежат замене. При покрытии их твердым хромом, срок службы возрастает более, чем в 3 раза.
  2. Металлический хром является пищевым покрытием. Это значит, он не вступает в реакции с пищей, не вызывает аллергии при контакте с кожей и слизистыми оболочками людей и животных. Поэтому им постоянно покрывают хирургические инструменты (скальпели) и детали механизмов, контактирующие с пищей.
  3. Хром устойчив в вакууме. Им покрывают детали космических кораблей.
  4. Хром термоустойчив, применяется для изделий, постоянно работающих с высокими температурами.

Существует еще множество назначений этого покрытия.

Процесс меднения без применения раствора

Схема простого устройства для меднения без раствора

Обрабатываемая деталь очищается от окисной пленки, обезжиривается, к ней зажимом «крокодил» подсоединяется проводник, соединенный с минусом источника тока.

Медный провод диаметром в полтора миллиметра зачищается от изоляции и продевается в щетину зубной щетки так, чтобы он находился внутри щетины. Второй конец подключается к плюсовой клемме источника тока. Включается ток, щетка смачивается в растворе, после чего щеткой водят по поверхности обрабатываемого изделия.

Периодически щетку снова смачивают в растворе. Операцию проводят до тех пор, пока предмет полностью не покроется медью.

Способы меднения металлов

С помощью химического метода нельзя получить покрытия большой толщины, но оно проще, дешевле и может выполняться в крайне простых условиях. С помощью него легко получить тонкие декоративные пленки не только на металлах, но и на пластике, стекле, керамике и пр.

К примеру, химическое меднение стали происходит за несколько десятков секунд путем простого погружения в медный купорос.

Погружение в электролитный раствор

Оба метода могут применяться с полным погружением детали в раствор электролита. При гальваническом методе анионы меди отрываются от анода и движутся к катоду под воздействием электрического тока, а при химическом их движение происходит за счет разной электроотрицательности металлов.

Поэтому в первом случае при прочих равных условиях за одну и ту же единицу времени осаждается гораздо большее количество меди, но при этом затрачивается электрическая энергия.

Меднение алюминия рекомендуется производить только методом погружения, которое необходимо выполнять сразу после обезжиривания и травления в кислоте, иначе на его поверхности быстро образуется прочная оксидная пленка.

В видеоролике ниже подробно рассказывается об условиях, которые необходимо соблюдать для качественного меднения алюминия.

Без помещения в электролитный раствор

В первом случае необходимо изготовить медную кисточку из обрезка кабеля с большим количеством мягких медных жил. Ее подсоединяют к плюсу источника, а минус подают на изделие. Затем, постоянно обмакивая кисточку в электролит, «красят» подготовленную поверхность, подбирая по ходу условия и скорость меднения.

Во втором варианте изделие просто покрывают раствором медного купороса с помощью малярной кисти, очищая и обмывая его после каждого слоя. Толщина обмеднения в этом случае будет небольшой и зависит от условий обработки и количества наложенных слоев.

Этот метод хорошо подходит для меднения стали, к которой медь «липнет» даже при условии не очень хорошей подготовки поверхности. А при нанесении таким способом медного купороса на поверхность алюминия достаточно сложно добиться устойчивого результата из-за его склонности к быстрому окислению.

Использование медного купороса

Если на медном купоросе садово-огородного назначения не указан состав, то для электролита он не годится, т. к. может содержать различные добавки, влияющие на гальванический процесс.

При приготовлении электролита в домашних условиях не следует применять сырую водопроводную воду, поскольку она содержит недопустимые при меднении соединения хлора. Перед использованием ее следует отстоять и прокипятить или же просто приобрести дистиллированную.

ПОСМОТРЕТЬ медный купорос на AliExpress →

Что такое гальваника?

Гальваника – раздел в науке «Электрохимия», изучающий процессы осаждения металла или оксида на поверхности изделий для придания им новых функциональных свойств или улучшения внешнего вида. Проще говоря, гальваника — это нанесение на металлические изделия защитной металлической пленки.

Как происходят процессы в гальванике?

В специальную ванну наливают раствор (далее — электролит) и помещают изделие, на которое необходимо нанести покрытие. В этот же раствор помещают «аноды» (куски металла, служащие «донором» для покрытия).

К анодам и изделию прикрепляют трансформатор тока (выпрямитель), аноды цепляют на «+», изделие (катод) на «-». Подается электрический ток. Анод потихоньку растворяется в растворе, а затем осаждается на изделии, тем самым образовывая покрытие.

Иногда заказчик задают вопросы «Вы можете сделать гальванику?». Говорить только «Сделать гальванику», понимая под этим какое-то конкретное покрытие, нельзя. Гальваническим способом осаждается более 30 видов металлов и оксидов, поэтому всегда нужно уточнять, какое именно покрытие требуется. Гальваника — это метод, а, например, гальваническое цинкование — это уже конкретное покрытие.

Рисунок 1 — Принципиальная схема электролизера в гальванике.

Эта технология используется на нашем научно-производственном предприятии Электрохимия. Работаем в области гальваники более 7 лет. Мы оказываем услуги по нанесению гальванических и химических покрытий промышленным предпрятиям электронной, авиационной и машиностроительной отрасли. Имеем опыт работ в рамках Гособоронзаказа.

Использование меднения

Покрытие медью различных заготовок в последнее время часто проводится в домашних условиях. В большинстве случаев технология применяется для достижения следующих целей:

  1. Декорирование металла или пластика. Меднение металла в домашних условиях часто проводится для того, чтобы получить старинные на вид изделия, которые пользуются большой популярностью. Специальная процедура состаривания позволяет создать эффект длительного использования изделия. Кроме этого, медь после нанесения напоминает золото. Именно поэтому небольшой слой можно нанести для получения статуэтки или сувенира.
  2. Гальванопластика. Меднение стали подобным образом также может проводиться в домашних условиях. Суть технологии заключается в создании восковой или пластиковой основы, которая покрывается слоем рассматриваемого сплава. Гальванопластика часто применяется для получения ювелирных изделий или сувениров, матриц и волноводов. Применение специальных материалов позволяет существенно повысить качество покрытия.
  3. Получение деталей, используемых при создании различных механизмов. Меднение чугуна или другого металла проводят на производственных площадках при различных технологий. Покрытие заготовки медью позволяет существенно повысить электротехнические качества. Подобным образом можно получить клеммы или прочие подобные элементы, которые будут эксплуатироваться под напряжением. Изделия из чистой меди обходятся очень дорого. Именно поэтому часто применяется рассматриваемая технология.

Меднение стали

Меднение пластика в домашних условиях проводится крайне редко, так как подобный материал не выдерживает воздействие высокой температуры. Кроме этого, пластичность основания приводит к появлению структурных трещин.

Меднение без погружения в электролит.

Этот процесс подходит не только для стали, но и для цинка и алюминия. С одного конца мягкого многожильного провода снимите изоляцию и растеребите тонкие медные проволочки, чтобы получилась медная кисть. Для удобства работы привяжите ее к деревянной палочке или карандашу, а другой конец провода подсоедините к положительному полюсу источника тока.

Приготовьте электролит — концентрированный раствор медного купороса, желательно слегка подкисленный, — и налейте в широкую склянку, в которую удобно будет макать «кисть».

Подготовьте металлическию пластинку или другой небольшой предмет, желательно с плоской поверхностью. Протрите его мелкой наждачной шкуркой и обезжирьте, прокипятив в растворе стиральной соды. Положите пластинку в ванночку или кювету и подсоедините ее проводом к отрицательному полюсу источника тока. Схема собрана, осталось только ввести электролит.

Обмакните «кисть» в раствор медного купороса и проведите ею вдоль пластинки, стараясь не дотрагиваться до поверхности; работайте так, чтобы между пластинкой и кистью был всегда слой электролита. Проводки все время должны быть смочены раствором. На глазах пластинка будет покрываться красным слоем металлической меди. На обработку маленькой детали уйдут считанные минуты. Когда покрытие нанесено, высушите деталь на воздухе и матовый слой меди натрите до блеска шерстяной или суконной тряпкой.

Способы меднения металлов

Существует два базовых метода, с помощью которых выполняют покрытие металлов медью: гальваническое и химическое меднение. В обоих случаях главным условием является применение электролита на основе медного купороса, но при химическом меднении осаждение меди происходит без использования электрического тока. С помощью химического метода нельзя получить покрытия большой толщины, но оно проще, дешевле и может выполняться в крайне простых условиях. С помощью него легко получить тонкие декоративные пленки не только на металлах, но и на пластике, стекле, керамике и пр. К примеру, химическое меднение стали происходит за несколько десятков секунд путем простого погружения в медный купорос.

Погружение в электролитный раствор

Оба метода могут применяться с полным погружением детали в раствор электролита. При гальваническом методе анионы меди отрываются от анода и движутся к катоду под воздействием электрического тока, а при химическом их движение происходит за счет разной электроотрицательности металлов. Поэтому в первом случае при прочих равных условиях за одну и ту же единицу времени осаждается гораздо большее количество меди, но при этом затрачивается электрическая энергия. Меднение алюминия рекомендуется производить только методом погружения, которое необходимо выполнять сразу после обезжиривания и травления в кислоте, иначе на его поверхности быстро образуется прочная оксидная пленка. В видеоролике ниже подробно рассказывается об условиях, которые необходимо соблюдать для качественного меднения алюминия.

Без помещения в электролитный раствор

Меднение изделий без помещения их в емкость с электролитом производится как с использованием источника тока, так и без него. Выбор метода зависит от условий выполнения работ и оборудования, которым располагает домашний мастер. В первом случае необходимо изготовить медную кисточку из обрезка кабеля с большим количеством мягких медных жил. Ее подсоединяют к плюсу источника, а минус подают на изделие. Затем, постоянно обмакивая кисточку в электролит, «красят» подготовленную поверхность, подбирая по ходу условия и скорость меднения.

Во втором варианте изделие просто покрывают раствором медного купороса с помощью малярной кисти, очищая и обмывая его после каждого слоя. Толщина обмеднения в этом случае будет небольшой и зависит от условий обработки и количества наложенных слоев. Этот метод хорошо подходит для меднения стали, к которой медь «липнет» даже при условии не очень хорошей подготовки поверхности. А при нанесении таким способом медного купороса на поверхность алюминия достаточно сложно добиться устойчивого результата из-за его склонности к быстрому окислению.

Использование медного купороса

Одно из основных условий качественного меднения — это использование максимально чистого медного купороса. Поэтому данный реагент лучше приобретать в хозяйственных или специализированных магазинах в упаковках, на которых указано процентное содержание сернистого сульфата меди (не ниже 97–98%). Если на медном купоросе садово-огородного назначения не указан состав, то для электролита он не годится, т. к. может содержать различные добавки, влияющие на гальванический процесс. При приготовлении электролита в домашних условиях не следует применять сырую водопроводную воду, поскольку она содержит недопустимые при меднении соединения хлора. Перед использованием ее следует отстоять и прокипятить или же просто приобрести дистиллированную.

Общие сведения

Покрытие гальваникой бывает технологическим или декоративно-защитным. Это тонкий металлический тонкий слой, который в зависимости от гальванических элементов может выполнять эстетические функции. Гальванопластика не увеличивает прочность изделия, поскольку в этом случае требуются большие производственные мощности, но для красоты и придания «свежести» вполне подойдет.

Гальванические реакции происходят с помощью постоянного электрического тока. В специальную емкость-диэлектрик наливают раствор — электролит, в который погружают два анода. Аноды должны быть изготовлены из металла, который будет осаждаться на покрываемом изделии.

Обрабатываемая деталь присоединяется к минусовому выводу и помещается между анодами. Она выполняет роль катода. Аноды, в свою очередь, присоединяются к плюсовому контакту источника питания. Они становятся частью цепи, проводя ток в электролит и отдавая ему свои металлические элементы. Электролит передает необходимые частицы обрабатываемой детали, они постепенно обволакивают её тонким слоем. Аноды по площади должны превышать в несколько раз размер заготовки.

Другими словами, гальванизация представляет собой перенос молекул металла раствора на изделие в момент протекания через них электротока.

Любой гальванический процесс можно разбить на общие этапы:

  • Сборка гальванической установки.
  • Подготовка электролитного раствора.
  • Обработка и подготовка образца.
  • Запуск гальванического процесса.

Особенности меднения в домашних условиях

Меднение металла – особая технология нанесения слоя меди толщиной 1-300 мкм и больше. Особенности применяемых технологий определяют то, что медное покрытие будет прочно держаться на поверхности металла. Среди особенностей, которые приобретает заготовка, отметим следующие моменты:

  1. Пластичность.
  2. Высокая электропроводность. Медные изделия хорошо известны с тем, что могут проводить электричество и при этом не нагреваются. Именно поэтому часто создаются изделия, которые покрываются подобным сплавом.
  3. Более привлекательный вид. Медь блестит на солнце, на поверхности появляются блики.
  4. В атмосферных условиях сплав легко окисляется и покрывается налетом. Этот момент стоит учитывать при рассмотрении того, где и как именно будет использоваться изделие.
  5. Медная пленка со временем покрывается пятнами и радужными разводами.

Окисление стали

Обмеднение в домашних условиях может проводиться при применении специального раствора. Стоит учитывать, что процесс предусматривает использование специальных реагентов. Поэтому нужно предусмотреть наличие эффективной приточной вентиляции, а также индивидуальных средств защиты. Меденение пластика несколько отличается, предусматривает применение особой технологии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector