Правильное заземление в частном доме, схемы, устройство, монтаж, подключение
Содержание:
- Заземление
- Как работает заземление в частном доме (система TT)
- Для чего нужно заземление Видео
- Проведение расчета защитного контура
- Требования, контроль, проверка
- Применение системы TN-C
- Контролируемые параметры ЗУ
- Принцип работы
- Заземляющая система: область применения и принцип работы
- О термине простыми словами
- Как правильно выполнять заземление
- Проверка
Заземление
Начнем с разбора каждой системы по отдельности.
Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.
По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).
Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.
Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.
В стандарт входит три системы – TN, TT и IT.
Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.
Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).
Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).
Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.
Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.
Как правильно скручивать провода
В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.
Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.
В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.
Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.
Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.
Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.
Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.
Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.
Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.
Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.
Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).
Здесь можно подробнее узнать, как сделать заземление в частном доме.
Как работает заземление в частном доме (система TT)
Теперь перейдем непосредственно к рассмотрению темы заземления на примере частного дома имеющего заземление электрооборудования по системе TT. От распределительного трансформатора по столбам к каждому дому заходит однофазное питание 220 Вольт — фаза и нейтраль (рабочий нулевой провод). Помимо того, что нейтраль имеет нулевой потенциал, на распределительной подстанции она соединена через контур заземления с контуром заземления нашего дома. Объясним это простыми словами. Мы знаем, что земля это проводник, но не идеальный. В зависимости от грунта удельные сопротивления могут отличатся:
Удельное сопротивление грунтов | |
Вид грунта | Удельное сопротивление, Ом/м |
Глина | 50 |
Известняк плотный | 1000 — 5000 |
Известняк рыхлый | 500 — 1000 |
Известняк мягкий | 100 — 300 |
Гранит и песчаник в зависимости от выветривания | 1500 — 10000 |
Гранит и песчаник выветренные | 100 — 600 |
Гумусный слой | 10 — 150 |
Илистые грунты | 20 — 100 |
Мергели юрского периода | 30 — 40 |
Мергели и плотная глина | 100 — 200 |
Слюдистые сланцы | 800 |
Глинистый песок | 50 — 500 |
Кремнистый песок | 200 — 3000 |
Слоистые сланцевые грунты | 50 — 300 |
Голый каменистый грунт | 1500 — 3000 |
Каменистый грунт, покрытый травой | 300 — 500 |
Заболоченные грунты | От нескольких единиц до 30 |
Влажные торфянистые грунты | 5-100 |
Представим, что где-то в глубине, в каком-то слое находится условный проводник с сопротивлением близким к нулю. Делая контур заземления на подстанции мы снижаем сопротивление от нуля трансформатора к этому проводнику.
Аналогично с помощью контура заземления в доме (система заземления TT) мы снижаем сопротивление через землю к данному условному проводящему слою. И при пробое фазы на наше заземление образуется замкнутая цепь. Зачем это нужно? Для защиты от поражения током, например, в случае пробоя фазы на корпус заземленного бытового прибора. И для наглядности и понимания смоделируем несколько ситуаций при помощи программы Electronics Workbench.
Сопоставьте приведенную схему с предыдущей иллюстрацией:
Слева на право. 2 Ом — заземление нейтрали. Выше идет трансформатор. От него фаза поступает в дом (нулевой провод нам не нужен, так как мы моделируем пробой фазы на корпус). В данном примере заземляющий контур дома плохой, и имеет сопротивление 100 Ом. К корпусу на котором опасный потенциал прикасается человек. Примем общее сопротивление человека, обуви, пола 4000 Ом. В результате в цепи фаза-заземление — нейтраль появится ток силой 2,2 А (этого недостаточно для срабатывания автоматического выключателя), а через человека потечет опасный ток 54 мА. |
Рассмотрим вторую ситуацию, когда сопротивление контура равняется 4 Ом:
Дополнительно указаны напряжения между фазой и землей через контур заземления. Произошло падение с 220 Вольт до 146 Вольт. Следующее падение на участке с земли через заземлитель трансформатора к нейтрали. На этом участке напряжение уже 73 Вольта. То есть ток через заземление не просто стекает в землю. Он движется от точки с большим потенциалом к точке с меньшим потенциалом через землю. И в процессе движения при пробое фазы на землю теряется напряжение из-за сопротивления земли. |
Вернемся к защитным функциям заземления. Как видно, при сопротивлении контура 4 Ом ток короткого замыкания 36,7 А. А этого достаточно для срабатывания правильно подобранного автоматического выключателя. Одновременно снизился ток проходящий через человека до 36,8 мА. Но это все равно опасное значение при несрабатывании автомата. И если мы говорим о системе заземления TT, то автоматические выключатели здесь должны обязательно дополнятся УЗО (устройством защитного отключения).
Для чего нужно заземление Видео
Чтобы разобраться в том, зачем нужно заземление в доме – придется ознакомиться с его основным назначением. Как уже отмечалось в ранее представленном разделе, заземление служит для защиты человека от опасного потенциала, случайно оказавшегося на корпусе действующего оборудования. С порядком его работы и назначением проще всего ознакомиться на многочисленных примерах, представленных на видеороликах.
Что такое заземление?
Зачем нужен контур заземления
В заключение отметим, что понимание назначения заземления поможет сберечь здоровье работающих с электрооборудованием людей.
Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.
Помогла61Не помогла3
Проведение расчета защитного контура
Сопротивление контура заземления следует проводить, определив несколько значений:
- Определить удельное сопротивление почвы на участке.
- Выявить влажность грунта.
- Уровень солености почвы.
- Средней температуры в регионе.
- Расстояние от фундамента до контура.
- Размеров заземлителей и других деталей устройства.
Методика расчетов «проста» — нужно знать множество физических формул и иметь инженерное образование. Но, как правило, никакая методика выполнения расчетов не может учитывать все значения. Поэтому, проведя монтаж наружного контура заземления и измерив, значение сопротивления защиты – вы увидите, что расчет не совпадает с фактическим результатом.
По этой причине, для обустройства в данном регионе выполняется типовой проект, остается только провести изменения, учитывая удаление устройства от здания. И затем проводят измерение сопротивления контура, вносят изменения до достижения номинального значения сопротивления, не более 4 Ом в жилищном строительстве.
Поэтому, выбрав лучшую схему, соблюдая все размеры и глубину забивания заземлителей, подобрав качественный материал, правильно сделать работу для вашего жилья не составит труда. А рассчитать заземление нужно обязательно для крупных промышленных и торговых зданий.
Требования, контроль, проверка
При обустройстве и эксплуатации систем заземления организации контроля их состояния уделяется повышенной внимание. Перед проведением этих мероприятий в первую очередь необходимо ознакомиться с содержанием терминов, используемых для описания процедур
Под «проверкой» понимается визуальное обследование систем заземления на соответствие следующим требованиям:
- надежность контактов в местах сочленения элементов ЗУ;
- отсутствие следов разрушения на открытых частях конструкций и подводящих медных шин;
- состояние защитной окраски, которую рекомендуется регулярно обновлять, а также наличие маркировки на подводящих проводниках.
Под словом «контроль» понимают периодические испытания заземляющих контуров с целью выявления соответствия их сопротивлений стеканию тока установленным ПУЭ нормам. Согласно требованиям этого документа оно не должно превышать нескольких единиц Ома.
Согласно требованиям ПУЭ действующие ЗУ должны проверяться не реже чем один раз в полгода (визуальный осмотр). Та же процедура, сопровождающаяся выборочным вскрытием земляного покрова в подозрительных местах, проводится не реже одного раза за 12 лет. При организации контроля исправности и надежности функционирования систем ЗУ также исходят из рекомендаций ПУЭ, определяющих какие напряжения не требуется применять при проверке сопротивления контура, а какие – можно.
Кроме того, типовые методики проводимых периодически контрольных обследований предполагают обязательное измерение сопротивления электрического контура, называемого «петлей фаза-нуль». Эта искусственно создаваемая система формируется путем замыкания отдельно взятого фазного провода на металлический корпус подключенной к действующей сети электроустановки.
По сути, такая петля образуется между фазной шиной и заземленным нулем, что и стало поводом для присвоения ей такого названия. Знание этого параметра позволяет точнее контролировать цепи заземления с целью обеспечения требуемой эффективности защиты (стекания аварийного тока в грунт). От величины сопротивления этого контура зависит безопасность обслуживающего персонала и работающих с бытовыми приборами людей.
Применение системы TN-C
Система TN-C широко применялась в распространенных ранее двухпроводных сетях, которые нередко встречаются и сегодня (в основном – в домах старой застройки). С точки зрения рядового пользователя она характеризуется тем, что в этом случае в розетках отсутствует специальный заземляющий контакт.
Система заземления TN-C
В сетях, сконструированных на основе этой схемы, нулевой провод заземляется только на станционной стороне (фото выше). Поэтому при его случайном обрыве или так называемом «отгорании» все подключенные к линии электроустановки и приборы оказываются совершенно незащищенными. Это вынуждает пользователей персонально заземлять каждую единицу эксплуатируемого в доме бытового прибора или устанавливать УЗО.
В современном строительстве эта системы уже много лет не используется; сегодня ей на смену пришла более эффективная TN-S.
Применение системы TN-S
Система TN-S более совершенна в смысле организации защиты, то есть имеет большую степень электрической безопасности. Это объясняется тем, что в ней имеется «самостоятельный» заземленный проводник, служащий исключительно для этих целей. Правда, за счет использования дополнительного медного материала стоимость системы существенно возросла. В случае трехфазного питания, например, от источника электроэнергии (трансформаторной подстанции) приходится прокладывать кабель, содержащий пять проводов. Это три обязательные фазы A, B и C, а также нейтраль и защитный проводник PE.
Система заземления TN-S
При реализации системы TN-C в электрических цепях организация повторного заземления нулевого провода также обязательна. Она производится методом соединения нейтрального проводника с земляной жилой защитного контура, обустраиваемого на стороне потребителя.
Система TN-C-S
Эта схема разработана с целью устранения недостатков системы TN-S и предусматривает использование в качестве общей шины совмещенного PEN-проводника, проложенного только до ввода на объект.
Эта система представляет собой нечто среднее между двумя уже рассмотренными вариантами защиты. Она не лишена тех же минусов, что и TN-S, так как в случае повреждения проводника PEN на линии от подстанции до объекта, все установленные в нем электроприборы окажутся под опасным напряжением. Для этого случая ПУЭ предписывают дополнительную защиту шины PEN от деформаций и механических повреждений.
Система заземления TN-C-S
В этой системе обустраиваемый контур заземления – это повторное соединение нулевого провода PEN с ЗУ перед вводом на конкретный объект. При случайном обрыве проводника на участке линии питания «трансформатор подстанции — здание» заземление осуществляется исключительно посредством PE провода.
Для этого на вводе в электроустановку напряжением до 1 кВ или в распределительном шкафу дома провод PEN обязательно «расщепляется» на две шины. Одна из них используется как рабочий нулевой проводник, а вторая – в качестве заземляющей жилы.
Рассмотренный подход к организации ПЗ позволяет исключить занос в силовые цепи дома наведенных токов через эффект, оказываемый э/м полями внешних коммуникаций. Вдобавок к этому оно снижает потенциал на корпусах оборудования и бытовых приборов при случайном обрыве N-проводника.
Контролируемые параметры ЗУ
Надежная работа всего механизма зависит от того, какое общее сопротивление оказывает цепочка заземления. Оно, в свою очередь, образуется за счет соединительных шин и самой конструкции заземлителя. Уменьшение значения данной величины влечет за собой безопасную эксплуатацию приборов и всего оборудования, для которых положена защита. Процесс обустройства заземляющих контуров проводится методом подбора соответствующих форм конструкций, тем самым искусственно увеличивается территория взаимодействия ключевых элементов с почвой. Также проводится измерение заземляющих устройств.
Такого же результата можно достичь, специально повысив процент содержания соли в земле, обладающей непосредственным контактом с металлической частью заземлителя. Указанный метод будет снижать сопротивление стекания электричества в почву, что увеличит уровень надежности функционирования контура механизма.
Для того чтобы контролировать значение всех показателей, нужно организовать техобслуживание заземляющей системы, провести испытания заземляющих устройств. Они предполагают наличие обязательного замера указанных параметров. Если обнаружены существенные отклонения от предписаний ПУЭ, необходимо провести осмотр заземляющего устройства, починить его, а затем проверить сопротивление заземления во второй раз.
Принцип работы
Человека, прикоснувшегося к корпусу под напряжением, и систему заземления схематически можно представить как 2 параллельные ветви, подключенные к точке с высоким потенциалом. Из законов Ома и Кирхгофа вытекает следующее соотношение протекающих в них токов и сопротивлений:
I1/I2=R2/R1.
Говоря простыми словами, электрический заряд течет по пути наименьшего сопротивления. Чем ниже резистивность контура Pe, тем слабее ток в теле человека.
Максимально допустимые значения сопротивления для защитного заземления установлены ПУЭ:
Потребитель | Резистивность, Ом |
Домашняя электросеть с суммарной мощностью одновременно работающих приборов до 100 кВА | 10 |
То же свыше 100 кВА | 4 |
Телекоммуникационные системы | 2 |
Серверное оборудование | 1 |
Заземляющая система: область применения и принцип работы
При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:
- Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
- Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.
Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:
- Электрической сети напряжением менее 1 кВт:
- с переменным током трех трехфазных проводников с изоляцией нейтрали;
- с переменным током двух однофазных проводников, которые изолированы от земли;
- с постоянным током двух проводников при наличии изоляции обмотки источника тока.
- Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.
Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.
О термине простыми словами
Само понятие «заземление» происходит от слова «земля», то есть почва или грунт, назначение которых – служить отводом для опасных токов, стекающих по специально организованной цепи. Для ее образования необходимо неразрывное соединение всех частей защитной системы, которое начинается от точки контакта корпуса заземляющего элемента и заканчивается погруженным в землю элементом заземляющего устройства (ЗУ).
Внешний контур заземления частного дома (слева). Заземление внутри помещения (справа), заземляющий проводник указан пунктирной линией. Согласно определениям, приводимым в техдокументации, заземление это есть преднамеренное электрическое соединение металлических корпусов агрегатов со специальным заземляющим контуром. Исходя из рассмотренных фактов, можно сделать вывод, что заземлением называют преднамеренный электрический контакт защищаемого оборудования с грунтом.
Как сделать заземление.
Заземлители делятся на искусственные и естественные.
- Искусственные заземлители – это заземлители выполняемые специально в целях заземления людьми.
- Естественные заземлители – это металлические объекты, находящиеся в контакте с землей, которые могут быть использованы в целях заземления: водопроводные трубы, обсадные трубы скважин и т.д.
Заземляющий проводник – проводник, соединяющий заземляемую часть с заземлителем. Это могут быть стальные пластины, оцинкованные стальные пластины, медные кабеля сечением в соответствии с нормативными документами.
Как правильно выполнять заземление
Согласно положениям ПУЭ способ заземления для осветительных приборов зависит от характеристик сетей наружного освещения. При организации защитного заземления для линий с изолированной нейтралью тросы и металлические опоры подсоединяют к заземлителю. Если выполняется заземление сетей с заземленной нейтралью, то несущие металлические конструкции подключают к проводнику PEN.
Заземление металлических опор освещения действует следующим образом:
- При повреждении изоляции проводов наблюдается стекание электрического тока на землю.
- Благодаря заземляющим устройствам в области растекания рядом с неисправной опорой распределяются напряжения, которые не представляют опасность для человека.
При повреждении изоляции проводов наблюдается стекание электрического тока на землю. Благодаря заземляющим устройствам в области растекания рядом с неисправной опорой распределяются напряжения, которые не представляют опасность для человека. На величину показателей электрического потенциала влияют расположение заземлителей и сопротивление грунта.
Заземлители, которые применяют для заземления стальных опор освещения, представляют собой специальные элементы из металла. Они заглубляются в земле и в зависимости от исполнения бывают:
- в виде стальных пластин;
- в форме металлических прутков.
Стержни, которые выполняют функции заземлителей, забивают в грунт вертикально, причем глубина составляет до 3 м. При этом расстояние от основания почвы до верхней части элементов для заземления металлических опор освещения должно составлять 0,5 м. Горизонтальные заземлители в виде пластин устанавливают аналогичным образом.
Вертикальные стержни используют для заземления уличного освещения в тех случаях, когда проводимость верхних слоев почвы выше, чем нижних. Они обеспечивают лучший отвод тока при попадании молнии в опоры для наружного освещения. На скальных и каменистых грунтах опоры лучше заземлять с помощью горизонтальных элементов.
Диаметр заземляющих проводников, которые применяют для подсоединения заземлителей, зависит от параметров грунта и должен составлять не менее 6 мм. Во влажных почвах необходимо заземлять металлические опоры освещения, используя заземлители большего сечения.
При выполнении заземления металлических опор освещения для фиксации заземляющих проводников и заземлителей применяют сварку, а место крепежа окрашивают лакокрасочным составом. Нанесение краски на соединения заземлителей и заземляющих проводников препятствует появлению коррозии и защищает металл от разрушений.
Проверка
После выполнения всех операций по монтажу и подключению контура заземления, необходимо провести его проверку методом измерения его электрического сопротивления. Параметры этой величины не должны выходить за пределы, указанные в нормирующих документах.
В домашних условиях можно воспользоваться простым методом проверки. Лампочка от 100 до 150 Вт подключается между фазой и заземлением.
Проверка исполнения заземления при помощи лампы
По свечению лампы делаются выводы:
если лампа не загорается — заземление сделано неправильно;
горение лампы неярким, тусклым светом говорит о некачественном соединении элементов контура заземления или соединений при подключении;
яркое горение лампы говорит о хорошей работе заземления.
При такой проверке, в случае наличия в цепи УЗО, оно может сработать, что говорит о рабочем состоянии контура.
Проверка с помощью мультиметра.
Проверка заземления мультиметром
Проводится она по следующей методике:
необходимо подать напряжение, включив вводной автомат;
на мультиметре выберите режим измерения напряжения;
присоединяем концы мультиметра между фазным и нулевым проводами. Прибор должен показать величину в районе 220 вольт;
подобный замер делаем между фазой и заземляющим проводом. Напряжение может немного отличаться от предыдущего измерения, но само его наличие говорит о присутствии заземления;
если напряжение отсутствует, то заземления нет, либо оно нерабочее.
Проверку можно доверить профессионалам. Такая проверка приведена в видео:
Проверка контура заземления профессионалами