Защита от перенапряжения в сети 380 вольт

Содержание:

Источники возникновения импульсных помех

Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4–6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.

Различают источники ИП:

  1. Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
  2. Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.

Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.

Как обезопасить свою квартиру от скачков напряжения?

Замена  электропроводки в квартире не поможет решить проблему. В идеале заменить электросеть дома и системы распределения. Чтобы минимизировать последствия скачков в сети, рекомендуются такие решения:

  1. Реле – устройство, которое отключает приборы от питания в момент перепада напряжения. После стабилизации, реле подключает их обратно.
  2. Источник беспроводного питания подбирается согласно особенностям устройства дома.
  3. Стабилизаторы поддерживают питание в норме при скачках. На выбор представлены разные модели – релейные, электронные, электромеханические, феррорезонансные, инверторные.

Представленные устройства помогут решить проблему с перепадом, защитить технику, что актуально для современных сооружений.

Автоматические стабилизаторы напряжения на всю технику

При скачках или нехватке питания рекомендуется устанавливать стабилизаторы напряжения. Лучше всего устройства проявляют себя при «проседании» электроэнергии. Хорошо справляются с незначительными импульсными перепадами, но вот совсем неэффективны при высоком перенапряжении. В этом случае рекомендуется использовать их вместе с реле.

Точечная защита электросети (реле)

Специальное реле напряжения позволит решить проблему перенапряжения. Задача защитного прибора заключается в отключении электроэнергии, если показатели напряжения выходят за возможны нормы.

Только когда ситуация нормализируется, прибор возобновит питание. Защита будет обеспечена даже если на линии произошел обрыв нулевого провода или на сетевые провода попала контактная линия городского электротранспорта. Единственная ситуация, когда защитная установка бесполезна – импульсные скачки, которые образовались от близкого грозового разряда.

При защитном отключении рекомендуется обзавестись стабилизатором питания, чтобы на время перебоя быть с электричеством.

Устройство защиты от импульсных перенапряжений (УЗИП)

Различают УЗИП — варисторы и разрядники различных конструкций, обычно имеющие индикаторы, подающие сигнал об отключении. Варисторы обладают определенными недостатками: после срабатывания они должны остыть, что снижает уровень готовности грозозащиты при неоднократных ударах молний. Они крепятся на DIN-рейку, поэтому их легко заменить в случае необходимости.

Защита от перенапряжения и надежность применения устройства зависит от эффективности заземления с равными потенциалами TN-S или TN-CS, разделением защитного и 0-провода. УЗИП устанавливают с шагом 10 м по кабелю, чем обеспечивается расчетная последовательность срабатывания УЗИП.

На воздушных линях УЗИП устанавливается из разрядников и плавких вставок, в общем домовом щитке — варисторы кл. I, II, а на этажах — III кл. При необходимости дополнительной защиты розетки оборудуют в виде сетевых удлинителей.

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) — основным элементом является просто искровой промежуток.
  • Класс C (тип II) — здесь деталь варистор является основным элементом.

Скачки напряжения в электросети: что делать?

Если в квартире часто происходят скачки напряжения, то сначала узнайте, на чьём балансе находятся ваши сети. Если на балансе МКД, то обращайтесь в Управляющую компанию, если в СНТ — то к председателю садового общества.

Одновременно с этим сообщите о проблеме в энергоснабжающую организацию. Электросети внутри МКД находятся на балансе Управляющей компании, а за внешние сети отвечают энергетики.

Далее соберите подписи тех жильцов, у которых также бывают скачки напряжения. Напишите жалобу и отнесите её в УК, а также в РЭС, в отдел по работе с физлицами. Сейчас во многих городах при ресурсоснабжающих компаниях открыты центры обслуживания потребителей. Если в вашем городе такой центр существует, позвоните туда (телефоны и адреса можно посмотреть на сайтах компаний, например, Ленэнерго, Мосэнерго, Алтайэнерго).

Если вопрос никак не решается, то подайте жалобу на сайт Россетей, указав, что местные компании игнорируют проблему. Чтобы вопрос решался оперативнее, можно написать, что в доме проживают маленькие дети или ветеран войны, труда, инвалид, и такие скачки напряжения угрожают их жизни и здоровью.

А теперь представьте такую ситуацию: после колебания напряжения в сети не включается телевизор, холодильник, микроволновка и пр. Что делать, если сгорела техника от перепада или скачка напряжения? Опять же, в первую очередь обращайтесь в УК: звоните, оставляйте заявку. Не реагируют? Тогда зафиксируйте причинённый ущерб на бумаге и обратитесь в суд.

Действует ли гарантия на технику, испорченную вследствие скачка напряжения? Нет, данный случай не является гарантийным, так как по закону эти поломки являются следствием пользования техникой с нарушением правил пользования (превышение напряжения в 220W).

Однако судебная практика насчитывает тысячи дел, решённых в пользу потребителя, понёсшего убытки. Возмещение взыскивается с поставщика электроэнергии.

А теперь краткий алгоритм действий для тех потребителей, которые понесли убытки и из-за скачков напряжения в сети:

  1. Зафиксируйте дату и точное время перепада напряжения.
  2. Сдайте в ремонтную мастерскую вышедший из строя прибор; попросите мастера составить акт и указать причину поломки.
  3. Оплатите услугу по ремонту, сохраните платёжный документ.
  4. Составьте претензию, подробно описав в ней все обстоятельства случившегося. Приложите копию акта из сервисной мастерской. Потребуйте возместить сумму понесённых расходов по ремонту.
  5. Направьте претензию поставщику электроэнергии; копию претензии с подписью сотрудника о принятии и печатью организации оставьте у себя.
  6. Если по истечении 14 дней не последует никакой реакции, направьте исковое заявление в суд о возмещении ущерба в соответствии с п. 1 ст.13 вышеупомянутого закона.

В подавляющем большинстве случаев суд принимает сторону истца по таких спорам. Если не сможете составить претензию, исковое заявление, являться в суд самостоятельно, наймите юриста. Все расходы будут взысканы с ответчика.

Галерея сданных объектов

ООО «Инжиниринговая компания «Энергогарант». Адрес: Нижегородская область, г. Кстово, «Лукойл-Энергосети».

Работы по диагностике кабельных линий и электрооборудования методом частичных разрядов. Высоковольтные испытания и определение мест повреждений кабельных линий с изоляцией из сшитого полиэтилена. Окончание 2014 

«СПбВС» Филиал ОАО «Ленэнерго»

ЗАО «Первый Контейнерный Терминал». Адрес: СПб, Межевой канал, д. 5.

ЗАО «ПНТ». СПб, Элеваторная площадка, д. 32.

ООО «ГазпромИнвестЗапад». Компрессорная станция «Портовая» в составе стройки «Северо-Европейского газопровода. Участок Грязовец-Выборг». Внутриплощадочные сети электроснабжения, КИП и А, связи, системы пожарной сигнализации, комплекс технических средств охраны. Окончание 2012.

ООО «Инжиниринговая компания «Энергогарант». Адрес: Нижегородская область, г. Кстово, «Лукойл-Энергосети».

Управление Федеральной службы государственной регистрации, кадастра и картографии по Санкт-Петербургу.

ООО «ВВК Строй-Корпорация».

ОАО «Кубаньэнерго»

ООО «Форум». Адрес: г. СПб, пересечение Шуваловского проспекта и Парашютной улицы.

Секретарит совета межпарламентской ассамблеи государств-участников содружества независимых государств. Адрес: СПб, ул. Шпалерная, д. 47. 

ООО «СЭК»

ОАО «Ленэнерго»

  • Определение мест повреждений кабельных линий в районах Кабельной сети. Окончание 2013 г.
  • Диагностика методом частичных разрядов кабельных линий с изоляцией из сшитого полиэтилена и бумажно-пропитанной изоляцией. Окончание 2013 г.

ОАО «ФСК ЕЭС»

  • Реконструкция с заменой оборудования на ПС 220 кВ «Приморская». Окончание 2013 г.
  • Реконструкция с заменой оборудования на ПС 110 кВ «Эльтон». Окончание 2013 г.
  • Выполнение ПИР, РД и поставку оборудования и выполнение СМР и ПНР на ВЛ 330 кВ КАЭС-Южная 2. Окончание 2013 г.

ООО «Балтнефтепровод».

  • Техническое диагностирование и высоковольтные испытания кабельных линий 110 кВ методом частичных разрядов установкой OWTS 250. Окончание 2013 г.
  • Техническое обслуживание энергетического оборудования, электроизмерения до 1000 В. Окончание 2014 г.
  • Расчистка древесно-кустарниковой растительности и расширение просек ВЛ 10 кВ. Окончание 2014 г.

ОАО «ББТ». СПб, Угольная гавань, Элеваторная площадка, д. 28.

Строительно-монтажные, электромонтажные и пусконаладочные работы по организации электроснабжения. Срок окончания 2013 г.

Подключение стабилизатора

Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.

Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:

фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)

нулевую жилу (синего цвета) к клемме N (Nin)

заземляющую жилу к винтовому зажиму с обозначением ”земля”

Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.

Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.

Ноль на питание электроприборов берется с общего щитка.

Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.

Для этого подсоединяете кабель — выход со стабилизатора.

его фазную жилу к зажиму ВЫХОД (Lout)

нулевую к N (Nout)

жилу заземления, туда же где и заземляющая жила от входного кабеля

Еще раз визуально проверяете всю схему и закрываете крышку.

Возможно, вам также будет интересно

В прошлом термин «инструментальный усилитель» часто использовался некорректно. В первую очередь он обозначал приложение, а не архитектуру устройства. Основу инструментальных усилителей составляет та же архитектура, что и у операционных усилителей (ОУ), но ИУ являются специализированной разновидностью ОУ. Инструментальные усилители с высоким дифференциальным коэффициентом усиления (КУ) предназначены для усиления микровольтовых сигналов датчиков и подавления синфазных сигналов высокого

Любая радиоэлектронная аппаратура (РЭА), в том числе и устройства «Интернета вещей» (Internet of Things, далее — IoT-устройства), чтобы получить столь желанный сертификат соответствия от регулирующих органов, должна пройти полный цикл испытаний на электромагнитную совместимость . Традиционно это всегда было дорогостоящим мероприятием , состоявшим из нескольких поездок, как правило, в удаленный испытательный центр, где для окончательного

Как известно, тестирование на выполнение требований стандартов по электромагнитной совместимости (ЭМС) — обязательное условие при сертификации основной части радиоэлектронной аппаратуры (РЭА) и не только. Даже если ваше изделие не попадает в перечень РЭА, подлежащей сертификации, при выполнении НИОКР может понадобиться проверка совместимости его внутренних узлов. На производстве такая проверка бывает необходимой и для типовых испытаний при внесении тех или иных изменений в схемотехническое решение, конструкцию или в процесс изготовления, а также при поиске неисправностей. Для этих задач используются анализаторы спектра и специальные датчики. В предлагаемой статье мы познакомим читателей с бюджетным предложением от тайваньской компании Good Will Instrument Co., Ltd, которое предназначено для самых различных целей и приложений, в том числе и для тестирования по ЭМС.

Причины скачков напряжения

Существует много причин природного, аварийного и техногенного характера для скачков напряжения в электросетях

Основными провоцирующими факторами для перепадов напряжения в сети являются:

  • Одномоментная нагрузка от нескольких мощных приборов. Чаще это происходит зимой, когда жильцы многоквартирного дома или поселка подключают электро-конвекторы.
  • Плохое качество электрического оборудования или монтаж проводки/разводки с ошибками.
  • Погодные условия — шквальный ветер, гром, гроза, молнии.
  • Неправильная эксплуатация электроприборов.
  • Проведение сварочных работ при условии подключения аппарата к сети дома.

Во всех приведенных случаях могут наблюдаться как скачки напряжения, так и его падение.

Реле напряжения 220 В для дома: управление и дополнительные возможности

Управление устройства осуществляется с помощью кнопок на передней панели. Устанавливается нижний предел (обычно от 190 до 210 В). Шаг переключения составляет 1−2 В. После таким же образом выставляется верхний предел (220−280 В, шаг в 1−2 В). На последнем этапе можно установить задержку включения – от 3 до 900 сек.

Номинальный ток прибора зависит от марки и модели и может быть равен 25А, 32А, 40А, 50А или 63А. Этот параметр будет зависеть от нагрузки, создаваемой всеми потребителями в квартире или частном доме, подключёнными к 3- или 1-фазному реле контроля напряжения. Но это лишь общие сведения. В зависимости от марки и модели, перечисленные параметры могут отличаться.

К дополнительным возможностям можно отнести термозащиту, срабатывающую при внутреннем перегреве. Она отключает устройство при нагреве до определённой температуры, что может произойти при плохом контакте.

Защита от скачков напряжения 220в

Для того чтобы РН смогло принести пользу своему владельцу, его рабочие параметры (пределы допустимых напряжений и время задержки возобновления питания) необходимо правильно отрегулировать. Если в рабочей схеме используется одно РН, то устанавливать пределы допустимых значений следует, ориентируясь на характеристики бытовой техники, чувствительной к перепадам. Наиболее чувствительным и дорогостоящим оборудованием является аудио- и видеотехника. Диапазон допустимых значений напряжения для нее составляет 200 – 230В.

Допускаемое отклонение напряжения от номинальных показателей в отечественных энергетических сетях составляет 10% (198…242В). В случае частого срабатывания РН эти показатели можно брать за основу, осуществляя регулировку реле. Однако чувствительную бытовую электронику в этом случае рекомендуется защищать с помощью переносных стабилизаторов невысокой цены.

Никто и не говорит, что надо при плюс-минус 15В выключаться. Есть диапазон предельно допустимых отклонений в 10%, его большинство приборов должно выдерживать. Ставить нужно, исходя из этого, примерно 190В-250В. Хотя, с нашим состоянием сетей, особенно в частном секторе ожидаемо все

Так что разумная осторожность не повредит

Для того чтобы обеспечить максимально надежную защиту всех потребителей, следует использовать электрическую схему с несколькими реле. Рабочая схема защиты, включающая несколько РН, позволяет разбить потребителей по группам – в соответствии с их чувствительностью к перенапряжению:

  1. К первой группе относится аудио- и видеотехника (допускаемые значения напряжения – 200 – 230В);
  2. Ко второй можно отнести бытовую технику, оснащенную электрическим двигателем: холодильники, кондиционеры, стиральные машины и т. д. (допускаемые значения – 190 – 235В);
  3. Третья группа – это простые нагревательные приборы и освещение (допускаемые значения  – 170 – 250В).

Каждая группа потребителей подключается к своему РН. В такой схеме рабочие параметры каждого реле настраиваются индивидуально.

Защита сети от перенапряжения и скачков.

Время задержки возобновления питания должно соответствовать эксплуатационным требованиям, предъявляемым к бытовой технике. Для некоторых холодильников, к примеру, рекомендуемая задержка равняется 10 минутам.

Как бороться со скачками напряжения

Системные меры оставим на попечение энергетикам. В их прямую обязанность входит содержание генерирующих и линейных сетей в надлежащем состоянии. Задача потребителей фиксировать аномалии напряжения и незамедлительно сообщать в компанию, которой вы оплачиваете счета за электроэнергию. Если это не помогает, необходимо жаловаться в органы контроля и добиваться предоставления качественной услуги.

От нас (потребителей) зависит правильность эксплуатации электроприборов. Разумеется, в первую очередь необходимо следить за состоянием внутренних сетей с «нашей» стороны прибора учета. Защитные автоматы (пробки) должны быть исправны, внутренняя проводка соответствовать нагрузке. Если у вас розеточная сеть выполнена на проводе сечением 1.5 мм², нельзя использовать на этой линии мощные электроприборы.

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЯ

Нужно отметить, что в подавляющем большинстве случаев в этажных щитках нет защитно-коммутационных аппаратов, которые защищают от перенапряжения.

В основном там установлены ВА (выключатели автоматические), а основная функция ВА, это защита от токов короткого замыкания (К.З.) и перегрузки. УЗО, защищает от поражения электрическим током человека.

ПВ-пакетные выключатели служат для безопасной замены электрического счетчика со снятием напряжения. Они вообще не являются средствами защиты.

По этим причинам рекомендуется защитить дорогостоящее бытовое электрооборудование от перенапряжения специальными устройствами.

Основные критерии для выборов аппаратов защиты:

  • длительно-допустимый рабочий ток (А),
  • мощность (кВт),
  • напряжение (В),
  • степень защиты (IP),
  • диапазон защиты (± %).

Необходимо так же учесть, что на электробытовые приборы влияет как повышенное напряжение, так и пониженное. Так, к примеру, компрессоры холодильников при пониженном напряжении испытывают тяжелый пуск, и тем самым это отрицательно влияет на их рабочую характеристику.

Все эти характеристики есть на панели прибора. Произвести расчет защиты можно следующим образом:

I=P/U*cosФ, где

  • I — длительно-допустимый или рабочий ток электрооборудования включенного в сеть (А),
  • P — установленная мощность электроприбора, квартиры, дома (кВт),
  • cosФ — коэффициент, учитывающий реактивность нагрузки. Для обыкновенных ламп накаливания он равен 1, а для асинхронных двигателей может быть в диапазоне 0.8-0.9.
  • IP — это защита от внешних факторов, пыль, вода, химическая агрессивность среды.

При выборе защиты от перенапряжения необходимо определиться, будет этот аппарат защищать отдельный прибор (стабилизатор напряжения) или весь дом в целом.

На сегодняшний день, самые распространенные аппараты защиты, это РН (реле перенапряжения). Они свободно устанавливаются в этажных электрощитах. Если прибор устанавливается в частном секторе, то стоит рассмотреть комбинированную защиту — как от бытового перенапряжения, так и импульсного (молния, гроза), УЗИП.

Необходимо помнить, что стоимость защиты от перенапряжения несопоставима с дорогостоящим электробытовым оборудованием.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Основные причины скачков напряжения в сети

К резкому изменению уровня напряжения могут привести разные события – от технических моментов до погодных условий. Во многих случаях искать «виновных» нет смысла, но некоторые напрямую зависят от работы компании, обеспечивающей здание электроэнергией.

Грозы

Попадание молнии в ЛЭП вызывает сильное перенапряжение в сети

В прежние времена во время дождя и грозы вся техника отключалась от электропитания, розетки вынимались из сети. Бытовое оборудование не имело датчиков защиты, поэтому действия были целесообразны. Сегодня большая часть приборов имеет модули безопасности, которые предохраняют от скачков напряжения и резких перепадов.

Однако выключать компьютер, телевизор электрики рекомендуют. При возникновении грозовых облаков разряд молнии достигает миллиардов вольт. Современные системы защиты понижают риск прямого удара по электропроводке, но не исключают полностью. Чаще страдают кабели, проводимые в спальных районах. Такие линии прокладывают как угодно, иногда с нарушением норм. Сломаться могут роутеры, свичи, комп с винчестером и монитором, другое сетевое оборудование.

Атмосферное перенапряжение

Ситуация, схожая с грозой – в атмосфере скапливается разница в напряжении, возникает разряд молнии. Если удар попадет напрямую в электроустановку или в непосредственной близости от нее, в сетях возникнет резкий скачок напряжения. Маломощные установки сгорают прежде всего.

Различают индуктированный (рядом с блоком) и прямой бросок. Во втором случае помимо скачка напряжения возникают механические поломки – расщепляются стойки, опоры воздушных линий. Для бытовой техники и приборов опасность есть в каждом случае.

Причины техногенного характера

Скачки напряжения

Чаще всего причинами резких перепадов становятся технические проблемы и человеческий фактор. В домашних условиях и на производстве не всегда следят за предельной нагрузкой сети и подключают одновременно массу приборов, из-за чего возникает скачок электроэнергии. Устройства без защиты сгорят. К другим подобным ситуациям относят:

  • Перегрузка на трансформаторной подстанции – большая часть проектов была сформирована более 30 лет назад и не была рассчитана на современное количество потребляемой электроэнергии.
  • Аварии на ЛЭП и кабельных сетях – возникают из-за общего состояния проводов, оборудования и плохих метеоусловий.
  • Неисправность или плохой контакт с нулевым проводом.
  • Проблемы на внутридомовой части электропроводки (нарушения при прокладке, некачественное или неисправное оборудование).
  • Нахождение вблизи крупных промышленных и иных объектов (торговых центров, мастерских и подобных) с большим потреблением электроэнергии – при включении и отключении оборудования возникает резкий перепад напряжения на соседних сетях в том числе.

Как защитить свои микросхемы от этой надвигающейся угрозы?

Как вы понимаете, здесь настолько много вариантов, что простое решение не может быть применено ко всем вероятным ситуациям. Ниже приведен список факторов, которые будут определять, выдержит компонент РЭА событие в виде электрического перенапряжения или нет. Список разделен на две группы: не зависящие от нас факторы, которые мы не можем контролировать, и факторы, которые мы не только можем, но и должны контролировать.

Факторы, которые мы не можем контролировать:

Форма испытательного сигнала, определенная МЭК. Все виды воздействий импульса разрядного тока испытательного генератора на проверку устойчивости к электростатическому контактному разряду, представление электрических быстрых переходных процессов (пачек) и импульс при испытании на устойчивость к выбросу напряжения имеют совершенно разные профили, поэтому они будут использовать определенные недостатки устройств, на которые они по­разному воздействуют.
Технологический процесс и сама технология рассматриваемого компонента. Некоторые технологии изготовления микросхем более уязвимы для блокировки, чем другие. Например, процессы КМОП (CMOS) наиболее подвержены блокировке, но существуют способы смягчения этой опасности посредством тщательного проектирования и технологии изоляции канавками с диэлектрическим материалом (структура ИС с щелевой изоляцией), используемые во многих современных процессах.
Внутренняя структура устройства. Существует так много способов разработки ИС, что схема защиты, пригодная для одной ИС, окажется бесполезной для другой. Например, многие устройства имеют схемы синхронизации, включающие защитные структуры при обнаружении достаточно быстрого сигнала. То есть устройство, которое «выживет» после разряда статического электричества, «погибнет», если вы добавите достаточную емкость к месту воздействия

Этот ответ нелогичен, но его очень важно понять: проблема в том, что общий метод защиты схемы путем использования RC­фильтра может здесь не решить, а лишь усугубить проблему.

Факторы, которые мы можем контролировать:

  • Компоновка элементов и разводка цепей подключения на печатной плате. Чем ближе радиоэлементы окажутся к месту воздействия перенапряжения, тем выше вероятность получения ими сигнала более высокой энергии. Это происходит потому, что, когда воздействующий сигнал (в виде тока или напряжения) распространяется по дорожке печатной платы, его энергия рассеивается в виде электромагнитного излучения по пути его распространения. Кроме того, энергия импульса перенапряжения переходит в тепло, обусловленное сопротивлением пути его распространения, поглощается паразитными емкостями, а часть энергии импульса через емкостную и индуктивную связь попадает на соседние проводники.
  • Схема защиты. Именно здесь мы можем оказать наиболее существенное влияние на обеспечение живучести нашего конечного устройства.

Понимание того, как максимально эффективно разработать схему защиты, даст нам вышеперечисленное — именно то, что мы не можем контролировать.

Причины и последствия перенапряжения

Сетевое перенапряжение может быть чревато поломкой дорогостоящих приборов. Есть несколько факторов, по которым величина напряжения в сети резко меняется:

  • Неверное соединение проводов в щите. Случается это чаще всего из-за банальной невнимательности. Если подлежащие соединению провода были перепутаны, это приведёт к возникновению скачка.
  • Разрыв нулевого провода. Именно он отвечает за то, чтобы в сети было правильное ровное напряжение без перепадов. Его разрыв непременно повлечёт за собой сбой, при котором один участок электрической цепи получит 220 В, а другой — 380 В.
  • Просчёт операторов. В процессе работы на подстанциях иногда специалисты производят несогласованное регулирование подаваемого тока.
  • Электропитание от одной линии. Такие линии обладают заводом очень большой величины. Когда всё оборудование, подключённое к ней, одномоментно запускается, внутри сети происходит резкий подъём тока.
  • Природные факторы. В первую очередь к таким факторам относится гроза. Разряд молнии, попадающий в линию электропередач, провоцирует импульсное напряжение, достигающее десятков тысяч вольт. Чтобы не нарушить работу электрических приборов в такой ситуации следует в обязательном порядке обесточивать их во время грозы либо заранее позаботиться об установке молниезащиты.

Современные приборы, работающие от электросети, создаются с учётом возникновения небольшого перенапряжения. Если его величина не превосходит 1000 В, то благодаря встроенной защите поломки не случаются. Но в случаях когда перепад превышает установленную норму, наступает короткое замыкание, проявляющееся в перегреве проводов, пробоях изоляционной оболочки, появлению искр. Подобная ситуация весьма опасна для человека.

Это интересно: Напряжение в сети 100-140 Вольт: что делать?

Заключение: о защите цепи в двух словах

Если вам кажется, что RC-фильтр или TVS-диод выглядят так, будто их просто добавляют в схему после решения всех «важных» вопросов, вы глубоко ошибаетесь и сильно рискуете. Вспомните все упомянутые в этой статье моменты, оказывающие влияние на производительность системы и уровень защиты, — должную компоновку, правильный выбор, используемые аналоговые входные каскады и стандарт МЭК, требованиям которого необходимо соответствовать. Если вы вспомните об этом на раннем этапе, то на заключительной стадии, скорее всего, вам не придется экстренно перепроектировать свою систему.

Как уже было сказано, эта статья далека от детального обзора. В частности, тема чувствительности будет более подробно рассмотрена в последующих статьях. Другие проблемы в конструкции приемника базовой станции включают алгоритмы автоматической регулировки усиления (automatic gain control, AGC), оценку канала и алгоритмы выравнивания. Мы планируем дополнить эту статью серией технических публикаций, чтобы упростить процесс проектирования и сделать более понятной всю систему приемника в целом.

Автор статьи благодарит Международную электротехническую комиссию (МЭК) за разрешение на воспроизведение информации из ее международных стандартов.

Подводя итоги

В заключение можно сказать, что на сегодняшний день реле напряжения стало не роскошью, на которую не стоит тратиться, а необходимым устройством, способным защитить от огромной дыры в бюджете в случае сильного скачка напряжения и выхода из строя бытовых домашних приборов. Надеемся, что информация, изложенная в сегодняшней статье, была полезна нашему уважаемому читателю. Редакция Seti.guru будет рада ответить на ваши вопросы (если они появились по ходу прочтения) в обсуждениях ниже. Там же можно поделиться своим опытом в использовании подобного оборудования – он будет весьма полезен начинающим домашним мастерам. А напоследок предлагаем посмотреть короткое, но весьма информативное видео по сегодняшней теме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector