В чём измеряется радиация: радиационный фон и дозы облучения

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного  облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей  Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

Смертельная доза облучения

Опасность получения смертельной дозы облучения в основном появляется при техногенных авариях или при неправильном хранении радиоактивных отходов. Смертельная доза радиации начинается с 6-7 Зв в час и более. Но даже в небольшой степени, но постоянно повышенный радиационный фон может вызвать мутацию клеток. Риск возникновения онкологических заболеваний можно снизить, используя бытовые дозиметры. Радионуклиды имеют свойство накапливаться. Поэтому следует регулярно проверять окружающий радиационный фон, строительные материалы, природные источники воды.

Смертельная доза

В любых нормах радиации обычно всегда прописывается доза, которая быстро приводит к летальному исходу. Опасность ее получения чаще всего наблюдается при возникновении техногенных аварий, несоблюдении условий хранения радиоактивных отходов (вне зависимости от того, какой тип облучения воздействует на человека).

Согласно нормам радиации, смертельная доза составляет от 6-7 Зв/час и больше. При этом даже в незначительной степени постоянно высокий радиационный фон с высокой долей вероятности будет причиной развития мутации клеток живого организма. Нормы радиации на рабочем месте или в домашних условиях можно отслеживать с помощью бытовых дозиметров.

Как правильно выбрать дозиметр

При выборе устройства учитывают определенные параметры прибора. Для выявления гамма-излучений применяют дозиметры, для альфа- и бета-излучений – радиометры. Есть аппараты оснащенные двумя функциями. Бытовой дозиметр выбирают, по многим показателям.

На что смотреть:

  • Тип устройства. Лучше выбирать газоразрядный, нежели полупроводниковый. Параметр влияет на точность устройства и его работу.
  • Виды радиации. Прибор измеряет один либо несколько показателей. Лучше выбирать универсальные модели. Результат появляется одновременно либо по очереди.
  • Погрешность. Важная величина, ее обязательно учитывают при выборе. Чем ниже погрешность, тем точнее показатели радиации и выше цена дозиметра.
  • Диапазон. Это наименьшие и наибольшие показатели радиационных частиц, улавливаемых прибором.
  • Проверка. В паспорте устройства требуется наличие печатей и отметок о проверке исправной работы и соответствия заявленным характеристикам.

К выбору дозиметра необходимо подходить ответственно, учитывать все показатели перед покупкой.

Понравится статья: «Вред телевизора для здоровья человека — детей и взрослых

Разновидности излучения, свойства и характеристики

Ученые выделили 3 вида излучения:

  • альфа-излучение (α) — поток ядер гелия (их называют альфа-частицами);
  • бета-излучение (β) — поток электронов;
  • гамма-излучение (γ) — электромагнитное излучение с большой проникающей способностью.

На основе излучения выделяют 3 основных типа радиоактивного распада:

  • альфа-распад;
  • бета-распад;
  • гамма-распад, или изомерный переход.

Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.

Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.

При этом некоторые изотопы могут одновременно испытывать более одного вида распада.

Альфа-распад 

Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута. 

Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см. 

Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека. 

Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии. 

Рассмотрим правило смещения Содди для α-распада:

X ZA→Y Z-2A-4+H 24e

ПримерКак уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:

U 92238→α-распадT 90234h+H 24e→αR 88230a+H 24e→αR 86226n+H 24e→αP 84222o+H 24e→αP 82218b+H 24e

Бета-распад 

Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.

Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.

Выделяют несколько подвидов бета-распада:

  • бета-минус распад;
  • бета-плюс распад;
  • электронный захват.

Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.

Правило смещения Содди для β—распада:

X ZA→Y Z+1A+e -1+ν¯e

Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.

Правило смещения Содди для β+-распада:

X ZA→Y Z-1A+e++νe

Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.

Правило смещения Содди для электронного захвата:

X ZA+e-→Y Z-1A+νe

Гамма-распад

Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.

При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов. 

Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.

Нормальный радиационный фон жилого помещения

В своей квартире человек отдыхает, ест, спит, а также скрывается от непогоды и негативных внешних факторов, поэтому мало кому хочется, чтобы радиация в квартире была выше нормы. Радиация обнаруживается повсеместно

Очень важно, чтобы в помещении, где человек находится постоянно, она не была выше 25 мкР/ч

. Причем заданный уровень не должен быть превышен ни в одной из зон квартиры. Превышение порогового значения чревато негативными последствиями для организма. Сам человек может их не ощутить, но они обязательно отразятся на потомках.

Как узнать, не превышена ли радиация в квартире? Для начала нужно разобраться, откуда она берется.

Допустимые дозы радиации

Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).

При этом также отмечается, что не более 0,2 мкЗв в час (20 микрорентген в час) – это максимально безопасный уровень облучения человеческого организма при условии, что радиационный фон входит в диапазон нормальных показателей, поэтому норму радиации даже в этом случае можно назвать условной. При воздействии в течение нескольких часов считается безопасным излучение на уровне не более 10 микрозиверт в час (1 миллирентген). Кратковременно допускается облучение в несколько миллизивертов в час (например, во время рентгена или флюорографии).

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Чем измеряется облучение[править]

Наиболее известный прибор — дозиметр; он предназначен для измерения полученной человеком эквивалентной дозы, и проградуирован в зивертах или бэрах (устаревшие модели могут быть проградуированы в рентгенах). Дозиметров существует много и разных, в нашей стране широко известны маленькие дозиметры в виде ручки.

Более сложный прибор — дозиметр-радиометр, у него есть и ещё один режим — замерять активность образца в распадах в минуту или секунду.

Счётчик Гейгера — простой и давно известный детектор радиации, один щелчок которого — это пролёт через камеру счётчика одной частицы. Когда он делает вот так: тик-так! тик-так! — это значит, что пора уносить ноги и глотать антирадин на всякий случай. В случае превышения некоторого значения интенсивности зашкаливает, и в этом случае чиселке, которую он показывает, уже нельзя верить. Некоторые современные дозиметры представляют собой улучшенные счётчики Гейгера с прикрученной к ним электроникой для перевода попугаев в зиверты.

Плёночный значок — по принципу действия похож на старинную фотопластинку, но покрыт менее чувствительными солями, которым пофиг на свет. А на радиацию не пофиг, от неё они чернеют. Если значок из белого стал чёрным, значит, носитель значка схватил опасную дозу и ему пора лечиться.

В чем измеряется радиация

Измеряется радиация в разных величинах в зависимости от особенностей излучения:

  • Кулон – обозначает мощность радиации. 1 кулон равен 3876 рентгенам.
  • Грей – обозначает поглощенную дозу в размере 1 Джоуля на 1 кг массы.
  • Рад – международная единица, которая также обозначает поглощенную радиацию. 1 грей равен 100 рад.
  • Зиверт – приводит к общему знаменателю различные виды излучения. Так как альфа, гамма и другие виды оказывают разное действие, то для удобства учета зиверты приводят их к единому знаменателю по степени вреда для здоровья. 1 зиверт равен 1 грею. Однако в греях измеряется лишь мощное излучение.
  • Рентген – показывает силу излучения, но он не может показать, какой вред здоровью приносит то или иное излучение. Услов 1 зиверт равен 100 рентгенам.

Большинство дозиметров замеряют уровень радиации в рентгенах, это значит, что они показывают мощность источника радиации. Дорогие модели показывают излучение в рентгенах и зивертах.

Разновидности

Счетчик – главный компонент, который используется для измерения частиц излучения в воздухе. Существуют разные типы приборов, некоторые из которых направлены в основном на совокупные излучения гамма и бета частиц. Например, счетчик Гейгера направлен на то, чтобы регистрировать бета и альфа излучения. Газоразрядные приборы используются для фиксации гамма и бета излучения, однако такие приборы обычно фиксируют излучения только выше нормы.

Миниатюрные аппараты, чей принцип основан на ТЛД отличаются тем, что регистрируют только рентгеновские излучения, где скопление частиц минимально. Характеристики дозиметра, который основан на сцинтилляционных кристаллах, направлены только на нахождение радиоактивного фона, состоящего из гаммы и бета излучения.

Данные приборы обычно занимают довольно мало места и помещаются в карман, что делает их полностью мобильными. Существуют еще пин-диоды, которые выглядят как обычное дополнение для телефона. Такой прибор считает самым низкоэффективным, так как может показать только критическое излучение.

Измерение радиационного излучения

При слове «радиация» у многих людей в мозге возникает картины страшной аварии на Чернобыльской АЭС. Однако люди каждый день подвергаются воздействию тех или иных ионизирующих факторов. Для измерения этого ионизирующего излучения существует ряд приборов. Соответственно, существуют и единицы измерения, и допустимые нормы радиационного фона.

К основным источникам радиации относятся:

  • природные радиоактивные вещества, окружающие человека (70%);
  • медицинские аппараты: рентген, томограф и прочие (10%);
  • космическая солнечная радиация (именно от неё человечество защищает озоновый слой) (15%);
  • бытовые электроприборы (5%).

Проверку на величину радиационного фона и силу излучения проводят с помощью специальных приборов, которые позволят с точностью определить, насколько интенсивно излучение в исследуемом участке. Чаще всего замеры проводят в следующих местах и случаях:

  • при наличии рядом явного источника радиационного заражения (вблизи атомных электростанций);
  • во время путешествий и походов по неизвестной территории, где рядом может находиться радиоактивный источник;
  • перед строительством жилого дома или при приобретении квартиры.

Уровни безопасности при радиации

Есть строго определённые уровни безопасных величин радиационного фона для человека. Для каждой территории свойственен свой уровень радиационного фона. Безопасным и приемлемым показателем для человека является излучение, величиной 20 микрорентген в час, что соответствует 0,2 микрозивертам в час. Предельно допустимая доза, то есть, такая, что неспособна нанести вред человеческому организму, — 50 микрорентген в час или 0,5 микрозиверта в час. Любой фон, выше данных значений, является небезопасным, и долго пребывать в подобных участках крайне не рекомендуется.

Считается, что доза облучения, которую человек может вынести без особого вреда здоровью, — 10 микрозивертов. Если ионизирующее воздействие было очень кратковременным, то речь идёт о величине нескольких миллизивертов. Таким воздействием, например, обладает рентген-аппарат.

Важно! Человеческий организм способен накапливать облучение на протяжении всей жизни. Следует помнить, что порог подобного накопления — 700 миллизивертов

Его ни в коем случае нельзя пересекать!

Табличная инфографика, иллюстрирующая количество радиоактивного облучения, с которым человек сталкивается в повседневной жизни и которое может нанести вред здоровью. В таблице единицами измерения радиации являются миллизиверты .

Доза облучения Описание
0,01 мЗв Доза облучения во время стоматологического рентгена.
0,4 мЗв Доза, которую получит женщина во время маммографии.
1,02 мЗв Дозировка в час, которая был зафиксирована на атомной электростанции в Фукусиме (Япония) 12 марта 2011 года.
2,4 мЗв Нормальный годовой уровень радиации.
6,9 мЗв Доза облучения во время флюорографии.
10 мЗв Доза облучения во время компьютерной томографии
100 мЗв Больший риск приобретения онкологического заболевания.
350 мЗв Воздействие на жителей Чернобыля, которые были переселены.
400 мЗв Максимально зафиксированный уровень излучения в час на АЭС в Фукусиме 14 марта 2011 года.
700 мЗв Через несколько часов после воздействия начинается неконтролируемая рвота.
1000 мЗв После воздействия подобной дозы шанс выжить составляет 50%.
6000 мЗв Средняя дозировка, которую получили ликвидаторы аварии на Чернобыльской АЭС. Они все умерли в течение месяца после трагедии.
10 000 мЗв Внутреннее кровотечение, смерть в течение двух недель после облучения.
20 000 мЗв Когнитивные нарушения, судороги и смерть в течение нескольких часов после облучения.

Читать также Характеристики ультрафиолета, его применение и воздействие на человека

Какой дозиметр выбрать

Чтобы определиться какой дозиметр выбрать, нужно понять, кокой вид радиации для человека представляет опасность и что желательно контролировать в повседневной жизни.

Все виды радиации опасны, но в бытовой сфере и окружающей нас среде, можно столкнуться с действием в основном трех видов радиации — это бета, гамма и альфа излучение. Наибольшую опасность представляет альфа излучение, так как оно наносит живой ткани наибольший урон. Но зарегистрировать альфа излучение сложнее всего, потому что для его измерения, дозиметр должен быть поднесен вплотную к источнику излучения, так как альфа излучение распространяется в пространстве на небольшие расстояния в пределах 2-3 см. Дозиметры способные зарегистрировать альфа излучение, должны иметь отдельный датчик в дополнении к датчику Гейгера-Мюллера. Обычно это специальное окошечко в дозиметре, которое имеет сдвигаемую защитную крышку.

Если позволяют денежные средства, то лучше купить дозиметр способный измерять три вида радиации — бета, гамма и альфа излучение.

Если вы не хотите тратиться на покупку дорогого прибора, то можно приобрести дозиметр-радиометр, измеряющий бета и гамма излучение. Это неплохое начало и возможно поможет вам избежать серьезных проблем со здоровьем. Такой прибор отлично подойдет для измерения общего радиационного фона в помещении и вне его. С помощью данного дозиметра можно проверить на безопасность продукты питания, строительные материалы, автомобиль и любые другие бытовые вещи.

При выборе дозиметра следует обратить внимание на следующие характеристики:

тип используемого детектора — это основной параметр, влияющий на точность и функциональность прибора. Лучше если это будет газоразрядный детектор, например, счетчик Гейгера-Мюллера. Хуже если это полупроводниковый детектор.

виды измеряемой радиации — прибор может измерять как один вид радиации, так и несколько видов. При измерении нескольких видов радиации, измерения могут проводиться одновременно для различных видов излучений, или необходимо будет переключаться с одного вида излучения на другой. Самый простой и распространенный вид дозиметра — это измерение бета излучения. Но лучше, если дозиметр будет способен измерять три вида излучений — альфа, бета, гамма.

погрешность измерения — это величина, которая характеризует точность прибора. Чем меньше погрешность, тем выше точность прибора, соответственно тем он лучше и дороже. Для бытовых приборов погрешность обычно составляет ±25% или ±30%. Для профессиональных дозиметров погрешность уже будет меньше чем ±7%.

диапазон измеряемых величин — это максимальное и минимальное значение радиации, которое способен зарегистрировать прибор

Стоит обратить внимание лишь на нижний порог измерений, он не должен быть выше чем 0,05 мкЗв/ч. Максимально измеряемый уровень радиации у всех дозиметров достаточно высок.

поверка прибора — это отметка в паспорте дозиметра, что он проверен на заводе изготовителе и соответствует заявленным в паспорте техническим характеристикам и производит измерения с заданной точностью

Желательно, чтобы отметка о поверке была в паспорте. В крайнем случае, в паспорте изделия должна стоять отметка ОТК (отдел технического контроля) о приемке изделия.

Остальные характеристики дозиметра влияют на его удобство эксплуатации, внешний вид и выбираются исходя из личных предпочтений.

Для чего нужно покупать дозиметр?

Для чего нужно приобритать дозиметр в бытовых целях, каждый решает сам.

В качестве информации к размышлению, можно посмотреть сюжет любительской видео съемки в городе Крансодаре, который является одним из самых безопасносных городов России
в отношении экологической обстановки. В простом лесном массиве, безобидные на вид предметы (7-я минута видео), излучают радиацию в миллионы раз превышающие безопасную норму. Находясь даже незначительное время в подобной зоне, можно получить дозу, которая с большой вероятностью приведет к крайне негативным последствиям для организма. К сожалению далеко не всегда, возле подобных объектов установлены занки «опасно радиация». Всему виной халатность и безответственность. Поэтому даже прогуливаясь в каком либо месте (фактически любом), человек может и не подозревать, что подвергается мощному радиационному воздействию. А потом удивляться, откуда берутся различные проблемы со здоровьем.

Как происходит заражение радиацией

Заражение радиацией возможно в любое время. Выделяют два варианта попадания вредных элементов в живые ткани.

Способы:

  • Ядерный взрыв. Радиоактивные частицы распространяются по воздуху, выделяются из облака взрыва и образуются путем распада гамма-лучей. Возникает неблагоприятное воздействие на растения, людей и животных.
  • Заражение возможно при возникновении аварий на предприятиях и утечке радиоактивных веществ. В зависимости от серьезности катастрофы, говорят о тяжести поражения человека.

Заражение радиацией приводит к разным сбоям в работе органов человека. У пострадавшего начинают проявляться разные заболевания, страдает иммунная система.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector