Расстояние между опорами лэп при монтаже
Содержание:
Санитарные нормы ЛЭП
Исследования влияния электромагнитных полей промышленной частоты (ЭМП ПЧ) на человека, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого воздействия магнитной составляющей не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены в действие жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты» № 2971-84. В соответствии с этими санитарными нормами проектируются и строятся все объекты электроснабжения.
Однако, в настоящее время, многочисленные исследования ученых в различных странах показали, что слабые электромагнитные поля (ЭМП), мощность которых измеряется тысячными долями Ватт, не менее опасны для человека, а в ряде случаев и более опасны, чем электромагнитные излучения ЛЭП большой мощности.
Такими низкими (нетепловыми) интенсивностями характеризуются излучения электронных бытовых приборов, имеющихся сегодня в каждом доме. Это, главным образом, компьютеры, телевизоры, мобильные телефоны, СВЧ-печи и т.п. Они то и являются источниками вредных для человека, т.н. техногенных ЭМИ, которые обладают свойством накапливаться в организме людей, нарушая при этом его биоэнергетическое равновесие и нормальное функционирование основных систем организма человека. Облучение ЭМП в условиях длительного многолетнего воздействия на человека может привести к развитию отдаленных последствий для организма, включая дегенеративные процессы центральной нервной системы человека, рак крови (лейкозы), опухоли мозга, гормональные заболевания и др.
Сегодня не для кого не секрет, что магнитное поле считается наиболее опасным для здоровья человека, однако предельно допустимая величина магнитного поля для населения в России и Украине не нормируется. Причина одна — нет денег для исследований и разработки норм. Большая часть трасс опор ЛЭП в Украине строилась без учета этой опасности.
На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения ЛЭП, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 — 0,3 мкТл.
Защита человека от электромагнитных полей ЛЭП
Основной принцип защиты здоровья человека от электромагнитного излучения ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.
Согласно нормам пребывание человека без средств защиты в электрическом поле напряженностью до 5 кВ/м включительно может быть сколь угодно длительным. Для ЛЭП 500 кВ напряженность поля 5 кВ/м достигается под проводами, находящимися на высоте менее 15 м от поверхности земли, а напряженность поля 10 кВ/м — под проводами ЛЭП, находящимися на высоте менее 8 м.
Под линиями ЛЭП в труднодоступной местности (например, болота, горные склоны) допускается напряженность электрического поля 20 кВ/м; для ненаселенной местности — 15 кВ/м, в местах пересечений с дорогами — 10 кВ/м и для населенной местности, где под линиями могут часто находиться люди — 5 кВ/м. Кроме того, нормируется допустимая напряженность на границах жилых застроек — 1,5 кВ/м, при этом допускается пребывание человека в течение всей жизни. Следует заметить, что указанные значения напряженности поля определяются на уровне головы (1,8 м. над поверхностью земли).
Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля — 1 кВ/м.
Для воздушных высоковольтных линий электропередачи (ВЛ) устанавливаются санитарно-защитные зоны ЛЭП по обе стороны от проекции на землю крайних проводов ВЛ. Эти зоны определяют минимальные расстояния до ближайших жилых, производственных и непроизводственных зданий и сооружений.
Расстояние между опорами трубопроводов
При прокладке трубопроводных систем различного назначения используют опоры нескольких видов. В зависимости от нагрузки, которая оказывается на магистраль, а также месторасположение металлоконструкций, подбирается соответствующий тип опор. Также важным параметром выступает расстояние между опорами трубопроводов, которое зависит не только от содержимого труб, но и от их диаметра. Правильно подобранные и установленные конструкции обеспечивают надежность и долговечность систем.
Разновидности
Строительство трубопроводов предполагает просчет всех параметров, оказывающих влияние на состояние магистралей. В зависимости от выявленных особенностей подбираются крепежи и опорные модули.
Существует два основных вида опор:
- Подвижные
- Неподвижные
Каждая разновидность обеспечивает прочность и надежность крепления, а также помогает нивелировать вибрацию. Все подвижные конструкции могут монтироваться только на открытой местности либо при туннельной прокладке
НОП обеспечивают наиболее надежное крепление, что очень важно при прокладке трубопроводных и технологических магистралей. НОП монтируются:
- На поворотах
- На подъемах
- Возле запорной арматуры
- Равномерно по всей длине
Расстояние определяется индивидуально в соответствии с размером труб и способом их прокладки.
Расстояние между опорами трубопроводов таблица СНИП
На государственном уровне существуют стандарты, которые регулируют дистанцию между опорными конструкциями.
Наружный диаметр трубы (мм) | Толщина стенки трубы (мм) | Предельно допустимое расстояние (м) | Принимаемое расстояние при надземной и подземной прокладке в тоннелях (м) | Принимаемое расстояние подземной прокладке в непроходных каналах, м |
25 | 2,5 | 2,5 | 1,9 | 1,9 |
32 | 2,5 | 3,2 | 2,7 | 2,7 |
40 | 2,5 | 3,9 | 3 | 3 |
57 | 2,5 | 4,9 | 3,8 | 3,8 |
76 | 3 | 6,4 | 4,9 | 3,8 |
89 | 3 | 6,9 | 5,3 | 4,1 |
108 | 3,5 | 8,3 | 6,4 | 4,9 |
133 | 4 | 9,6 | 7,4 | 5,6 |
159 | 4 | 10,4 | 8 | 6,1 |
219 | 4 | 12,8 | 9,8 | 6,4 |
273 | 4,5 | 14,7 | 11,3 | 7,9 |
325 | 5 | 16,6 | 12,8 | 8,3 |
377 | 5,5 | 18,3 | 14,1 | 9,2 |
426 | 6 | 19,8 | 15,2 | 9,9 |
530 | 7 | 22,7 | 17,5 | 11,4 |
630 | 8 | 25,6 | 19,7 | 12,8 |
720 | 8,5 | 27,7 | 21,3 | 13,9 |
820 | 9,5 | 30,3 | 23,3 | 15,2 |
920 | 10 | 31,9 | 24,5 | 16 |
1020 | 11 | 33,6 | 25,8 | 16,8 |
В строительстве учитываются все параметры, благодаря чему трубопроводы различного назначения сохраняют свою работоспособность в течение не одного десятилетия. В случае несоблюдения норм возможно провисание труб, их сильная деформация, которая ведет к появлению трещин и прочих дефектов. Также неправильный крепеж может привести к нарушению функциональности магистралей. Если трубопроводы выполнены только из стали, то повреждения будут проявляться преимущественно в виде изменения формы. В случае если конструкция включает в себя ППУ, то может произойти серьезное нарушение целостности системы и утечка.
Где можно приобрести опоры
ООО «ЗПИ «ЕВРОПРОМ» имеет большой опыт по изготовлению всех видов подвижных и неподвижных опор. Собственное производство гарантирует высокое качество товаров, представленных в каталоге. Вся продукция имеет сертификаты качества и отвечает международным стандартам. Менеджеры компании проконсультируют по всем возникающим вопросам, а также помогут оформить заказ. После оформления договора товары доставляются собственным транспортом в кратчайшие сроки. На все отгруженные изделия оформляются сопроводительные документы.
Типы конструкций
Для газо- и нефтепровода, для технической системы и для подачи горячей воды или сжатого воздуха по понятным причинам используются разные изделия с разными характеристиками. Поэтому первым требованием, которому должны удовлетворять опорные конструкции, выступает соответствие материала. Это не всегда означает полное совпадение, но это означает соответствие задаче: фиксация, гашение вибрации, стойкость к температуре и так далее.
Различают 2 основных типа конструкций: подвижные и неподвижные.
Подвижные – или скользящие, используются для гашения вертикальной нагрузки. Кроме того, они помогают равномерно распределить тепловую деформацию. Этот вид конструкций позволяет изменить положение трубопровода относительно опоры. Для расчетов имеет значение не столько назначение – передача газа, сжатого воздуха, сколько общий вес трубы с содержимым.
Различают несколько видов моделей:
катковые – в конструкцию вмонтированы катки, что обеспечивает линейную подвижность стального трубопровода;
Катковая опора
хомутовые – или приваренные. Представляет собой подвески, с помощью которых коммуникации закрепляются на потолок;
Хомутовая опора
пружинные – оснащаются пружинным амортизирующим блоком. Может сочетаться с хомутом;
Пружинная опора
опорное кольцо – вариант скользящей системы, в которой подвижность обеспечивается за счет материала конструкции. Это бескорпусная опора, которая выполняется из полимера, то есть, обладает высоким коэффициентом теплового расширения.
Неподвижные – в отличие от подвижных полностью исключают линейные или угловые смещения. Порой конструкционно они очень похожи на скользящие – хомутовые, например, но благодаря жесткой фиксации гарантируют неподвижность трубопровода.
Неподвижная фиксация трубопровода
Различают такие варианты неподвижных опор:
- корпусные приварные – конструкции соединяются с трубами посредством сварки. Устройство могут иметь разное, однако с трубопроводом, по сути, образуют единое целое;
- корпусные хомутовые – закрепляются на трубах за счет плоских или круглых хомутов;
- бугельные – разновидность хомутовых: модели оснащены дополнительные ребрами жесткости, что повышает их эксплуатационные качества;
- крутоизогнутые – специальные конструкции, предназначенные для фиксации труб на участках сгиба;
- вертикальные крепления – представляют собой прочные лапы, приваренные к вертикальной поверхности;
- щитовые – похожи по конструкции на вертикальные, но используются при прохождении коммуникаций сквозь стены.
Различное устройство опорных конструкций предполагает разное расстояние между ними. Однако последнее определяется не только типом изделия, но и характеристиками труб. Для расчетов все эти факторы нужно учитывать.
Расстояние между опорами ЛЭП от 1 кВ до 500 кВ
Правила установки опор ЛЭП. Для обеспечения нормальной работы и безопасного обслуживания ВЛ расстояния между опорами соседними, проводами и землей, фазами ВЛ должны соответствовать нормам, установленным ПУЭ. Расстояние между соседними опорами ЛЭП, двумя электрическими столбами называют пролетом. Опоры линий электропередач – металлические или бетонные конструкции, предназначенные для поддерживания проводов ВЛ на необходимой высоте над землей, по которым передается электрический ток.
Ниже в таблице представлены требования, которым нужно следовать при установке опоры ЛЭП (габаритные и монтажные расстояния линии, шаг установки столбов воздушных линий электропередач, сколько метров от провода до земли, расстояние между фазами ВЛ), необходимые условия, которые должны быть выполнены при монтаже воздушных линий электропередач.
Стандартное расстояние между электрическими столбами
Теперь вы узнаете, какое расстояние между опорами ЛЭП различного напряжения линии электропередач, т.е. сколько метров между столбами должно быть. Расстояние между опорами (пролеты) составляет 35-45 м (максимальное по нормам 50 м) для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Все расчеты расстояний между опорами ВЛ 0,4 кв, пролет между электроопорами ВЛ 1кВ, ВЛ 6кв, электрическими столбами ВЛ 6-10кВ, ВЛ 10 кВ, ВЛ 35кВ, расстояние между проводами ВЛ 110кВ, ВЛ 220кВ, расстояние между столбами высоковольной ЛЭП ВЛ 330кВ, ВЛ 500кВ, ВЛ 750кВ сведены в расчетную таблицу.
ЛЭП, кВ | Между проводами ЛЭП, м | Пролет, м | Высота опоры ВЛ, м | От провода ЛЭП до земли, м |
0,4-1 кВ | 0,5 | 40-50 | 8-9 | 6-7 |
6-10 кВ | 1 | 50-80 | 10 | 6-7 |
35 кВ | 3 | 150-200 | 12 | 6-7 |
110 кВ | 4-5 | 170-250 | 13-14 | 6-7 |
150 кВ | 5,5 | 200-280 | 15-16 | 7-8 |
220 кВ | 7 | 250-350 | 25-30 | 7-8 |
330 кВ | 9 | 300-400 | 25-30 | 7,5-8 |
500 кВ | 10-12 | 350-450 | 25-30 | 8 |
750 кВ | 14-16 | 450-750 | 30-41 | 10-12 |
1150 кВ | 12-19 | — | 33-54 | 14,5-17,5 |
Основные понятия и нормативное регулирование
Оформление охранной зоны позволяет ограничить или запретить строительство, а также другие виды деятельности со стороны собственников земельных участков, находящихся в черте данной зоны.
Также установление зоны гарантирует беспрепятственный доступ к объектам, расположенным на частных землях, для их ремонта и обслуживания.
Использование территорий, который находятся в охранной зоне ЛЭП, регулируют нормативные документы: Постановление Правительства РФ «О порядке установления охранных зон объектов электросетевого хозяйства и особых условий использования земельных участков, расположенных в границах таких зон» от 24.02.2009 г. № 160.
Опасность проживания вблизи ЛЭП
Введение правил установления защитных зон обусловлено вредным воздействием электромагнитного поля на здоровье человека.
Установлено, что у людей, проживающих вблизи линий электропередачи и трансформаторных подстанций, могут возникать изменения функционального состояния нервной, сердечно-сосудистой и эндокринной систем, нарушаться обменные процессы и иммунитет.
Поэтому, чем дальше от источников электромагнитного поля находится строение, тем лучше.
Для защиты населения от действия электромагнитного поля установлены санитарно-защитные зоны для линий электропередачи. Для воздушных высоковольтных линий электропередачи (ВЛ) устанавливаются санитарно-защитные зоны по обе стороны от проекции на землю крайних проводов.
Эти зоны определяют минимальные расстояния до ближайших жилых, производственных и непроизводственных зданий и сооружений.
Далее рассмотрим, каковы размеры охранной зоны кабельных линий электропередачи:
Напряжение линии | Расстояние (м) |
До 22 кВ | 10 |
35 кВ | 15 |
110 кВ | 20 |
220 кВ | 25 |
330÷550 кВ | 30 |
750 кВ | 40 |
1500 кВ | 55 |
Так расстояние от ЛЭП, которое безопасно для здоровья человека, определяется по классу напряжения линии. Охранная зона ЛЭП 6 кВ и 10 кВ составляет 10 метров. Для линий электропередач с напряжением 35 кВ это расстояние составляет 15 м и так далее, согласно таблице, указанной выше.
Сколько метров составляет расстояние для низковольтных линий? ЛЭП 0,4 кВ — 2 метра. Когда воздушная линия проходит через судоходные водоемы, расстояние охранной зоны — 100 метров для любого класса напряжения.
Расстояние 3 метра от ограждений или конструкций распределительных устройств и трансформаторных подстанций безопасно для человека.
Деятельность человека в охранной зоне
Охранная зона ЛЭП — специальные участки и территория, где человека быть не должно. В границах охранной зоны не допускается строительство дома, других зданий, сооружений.
Если линии электропередачи пролегают вдоль земельного участка, то его владельцы имеют право использовать этот участок с некоторыми оговорками, которые зависят от типа и рабочего напряжения электрических линий.
Охранные зоны линий электропередач необходимы не только для сбережения жизни и здоровья людей, но и для нормальной работы аварийных бригад при ликвидации поломок и аварийных ситуаций на линии электропередач.
Основные требования к производству работ
Таблица 177. РАССТОЯНИЕ МЕЖДУ ОПОРАМИ СТАЛЬНЫХ ТРУБОПРОВОДОВ
В жилых и общественных зданиях стояки из стальных труб прокладывают при высоте этажа до 3 м без креплений, а при высоте этажа более 3 м — с установкой креплений на половине высоты этажа. В производственных зданиях стояки крепят через каждые 3 м.
Крепления горизонтальных чугунных канализационных труб устраивают через 2 м, а для стояков — одно крепление на этаж, но не более 3 м между креплениями. Крепления чугунных труб располагают под раструбами.
Стальные трубопроводы с теплоносителем, имеющим температуру 40—105° С, в местах пересечения ими перекрытий, стен и перегородок необходимо заключать в гильзы для свободного перемещения труб при температурных изменениях. При температуре теплоносителя выше 105° С трубопроводы, проходящие через сгораемые или трудносгораемые конструкции, заключают в гильзы из несгораемого материала. Зазор между гильзой и трубой должен быть не менее 15 мм при заполнении его асбестом и не менее 100 мм без заполнения. Гильзы должны выступать на 20—30 мм выше отметки чистого пола. Края гильз необходимо располагать заподлицо с поверхностями стен, перегородок и потолков.
На стояках однотрубных систем отопления со смещенными замыкающими участками гильзы в перекрытиях не ставят. При этом расстояние от стояка до нагревательного прибора в проточных (без замыкающих участков) системах отопления или до смещенного замыкающего участка должно быть не менее 180 мм.
Места проходов трубопроводов через брандмауэры следует уплотнять несгораемым материалом (асбестом). Трубопроводы холодной воды в местах прохода через деревянные строительные кон¬струкции необходимо обертывать рубероидом.
Санитарные и нагревательные приборы устанавливают по отвесу и уровню. Однотипные санитарные и нагревательные приборы и арматура, расположенные в пределах одного помещения, должны быть установлены единообразно и на одной высоте.
При размещении баков для горячей воды на деревянных конструкциях в местах соприкосновения металла с деревом следует устанавливать прокладки из асбестового картона толщиной 5 мм. Санитарно-технические кабины устанавливают на выведенное по уровню основание. Перед установкой кабин проверяют, чтобы верх канализационного стояка нижележащей кабины и подготовленного основания находились в одной плоскости. Оси канализационных стояков смежных этажей должны совпадать. Вентиляционные каналы кабин необходимо присоединять до укладки плит перекрытия данного этажа.
Наружный осмотр, а также гидравлическое испытание трубопроводов при скрытой прокладке производят до их закрытия, а изолируемых трубопроводов — до нанесения изоляции.
Системы отопления и системы водоснабжения перед вводом в эксплуатацию необходимо тщательно промыть водой. Внутренние системы водопровода и системы отопления в зимних условиях присоединяют к наружным сетям непосредственно перед пуском систем.
Какое расстояние между столбами электропередач
Необходимая всем электроэнергия передается по проводам, подвешенным к столбам различной конструкции и линиям электропередачи.
Для безопасности большое значение имеет расстояние между опорами ЛЭП и их высота. ГОСТ регламентирует все размеры исходя из силы тока в проводах, материала и конструкции опоры.
Большое значение имеет и расположение опор ЛЭП на открытой местности или в населенном пункте.
Расстояние между фонарными столбами, опорами освещения
При установке фонарных столбов, осветительных опор в городе, вдоль дороги, расстояние между опоры наружного освещения города определяется исходя из количества осветительных фонарей установленных на опоре, их мощности и высоты установки светильника над дорогой.
Расстояние между осветительными столбами железобетонными при установке фонарных столбов вдоль дорог определяется по этой же таблице. Расчет расстояния между опорами освещения выполнен на основании норм освещенности дорог.
Данный расчет позволяет ответить на вопросы: «Сколько метров между фонарными столбами освещения?», «Какое расстояние между фонарными столбами?», «Какой пролет между столбами освещения?».
Отношение шага светильников к высоте их подвеса на улицах и дорогах всех категорий должно быть не более 5:1 при одностороннем, осевом и прямоугольном размещении светильников и не более 7:1 при шахматной схеме размещения. В таблице даны максимальные расстояния между опорами освещения с учетом требуемой освещенности дорожного полотна.
Сколько метров между опорой и дорогой при выполнении электромонтажа столбов освещения
Электромонтаж светильников наружного освещения осуществляется на опорах уличного освещения, мачтах осветительных, столбах линий электропередач и других сооружениях. Чтобы осветить ту или иную часть территории улицы, требуется смонтировать систему наружного освещения согласно нормам установки электроопор.
Чем хороши скользящие опоры под трубопроводы
Скользящие модели необходимы, если коммуникации проходят по поверхности земли. Таким образом обеспечивается свободное перемещение трубопровода в горизонтальной и вертикальной плоскостях. Также подобные приспособления оберегают всю конструкцию от преждевременного истирания.
Без скользящих элементов не обойтись при монтаже систем, испытывающих нагрузки во время сезонных перепадов температур, ведь в это время трубы расширяются и сужаются сразу в двух плоскостях.
За счет скользящих моделей удается добиться устойчивости коммуникаций, уравновесить их перемещение в пространстве, происходящее при изменении температур.
Скользящая модель включает в себя такие составляющие:
- основание, роль которого нередко играет уголок;
- полукруглый металлический держатель для трубы;
- прокладка;
- крепежные элементы, то есть гайки и болты.
Подвижные модели выпускают трех видов:
- жесткие;
- упругие;
- конструкции постоянного усилия.
Жесткие модели, в свою очередь, бывают:
- направляющими;
- жесткими подвесками;
- опорами скольжения.
Первые не позволяют коммуникации смещаться вниз и в горизонтальном направлении. Подвески второго типа позволяют добиться наибольшей подвижности всей конструкции. Тогда как последняя разновидность исключает перемещение трубы вниз в вертикальном направлении. Опоры упругого типа могут похвастаться подобной жесткостью лишь при условии, что труба смещается вертикально. Тогда работает такая закономерность: чем выше нагрузка на опорный элемент, тем дальше смещается труба. Отметим, что опора постоянного усилия справляется с любой нагрузкой вне зависимости от смещения коммуникации.
Чтобы защитить данный элемент системы от ржавчины, его грунтуют в несколько слоев. Либо он может покрываться грунтовой эмалью. Но самую высокую степень защиты от коррозии обеспечивает порошковое покрытие или оцинковка.
Обычно в качестве материала для изготовления подобных изделий выбирают прочную углеродистую сталь. Но ее приходится заменять на низколегированные сорта, когда становится известно, что трубопровод будет эксплуатироваться в условиях больших скачков температур.
При классификации скользящих опор для трубопроводов учитывается не цена, а их конструкция, поэтому выделяют такие типы:
- на кронштейнах (крепежные элементы);
- хомутовый;
- шариковый;
- диэлектрический;
- катковый (роликовый).
За счет использованных в ней катков роликовая конструкция позволяет снизить силу трения между ее основой и верхней частью. Отметим, что трение образуется при движении трубопровода.
Диэлектрические скользящие элементы выбирают для труб, при изготовлении которых использованы:
- углеродистая сталь;
- низкоуглеродистая сталь.
Подобные конструкции требуют изоляции из специального материала – листового паронита, в состав которого входят:
- каучук;
- асбест;
- дополнительные порошковые добавки.
Для изготовления шариковых скользящих элементов используют сталь, при этом они считаются специфическим крепежом. Дело в том, что с их помощью труба может двигаться сразу в двух направлениях: продольном и поперечном. Поэтому такие модели чаще всего устанавливают на электростанциях и теплотрассах.
Обычно приспособления скользящего типа изолируют от металлических кожухов при помощи гидроизоляции. А внутреннюю поверхность трубы и гидроизоляционный материал смазывают специальной графитовой смазкой, которая предотвращает трение. Далее приваривают и надежно затягивают хомуты
Немаловажно, что при монтаже подобных конструкций можно обойтись без спецтехники, за счет чего вся работа занимает гораздо меньше времени