♻ альтернативные источники энергии: время экономить

Содержание:

Преобразование тепловой энергии океана

Океаны покрывают 70 процентов Земли, а вода является природным солнечным коллектором энергии будущего. Преобразование тепла океана происходит путем использования температурных различий между поверхностными водами нагреваемыми солнцем и водой в холодных глубинах океана для выработки электричества.

Преобразование тепловой энергии океана может работать по следующему принципу:

  • Замкнутый цикл: жидкость с низкой температурой кипения, например аммиак, кипит используя теплую морскую воду. Полученный пар используется для работы электрогенерирующей турбины, затем пар охлаждается холодной морской водой.
  • Открытый цикл: теплая морская вода преобразуется в пар низкого давления который используется для генерации электричества. Пар охлаждается и превращается в полезную пресную воду с холодной морской водой.
  • Гибридный цикл: используется замкнутый цикл для того, чтобы произвести электричество, которое применяется создавая окружающую среду низкого давления необходимого для открытого цикла.

Тепловую энергию океана используют и для добычи пресной воды и богатых питательными веществами морской воды извлекаемой из глубин океана для культивирования морских организмов и растений. Главный недостаток тепловой энергии океана, что необходимо работать на таких малых разницах температуры, вообще около 20 градусов по Цельсию где эффективность от 1 до 3 процента.

Методы сбора энергетических ресурсов Земли

Сегодня есть три основных метода сбора геотермальной энергии: сухой пар, горячая вода и бинарный цикл. Процесс с сухим паром прямо вращает привода турбин генераторов электроэнергии. Горячая вода поступает снизу вверх, затем распыляется в бак, чтобы создать пар для привода турбин. Эти два метода являются наиболее распространенными, генерируя сотни мегаватт электроэнергии в США, Исландии, Европе, России и других странах. Но расположение ограничено, так как эти заводы работают только в тектонических регионах, где легче получить доступ к подогретой воде.

При технологии бинарного цикла извлекается на поверхность теплая (не обязательно горячая) вода и объединяют её с бутаном или пентаном, который имеет низкую температуру кипения. Эта жидкость перекачивается через теплообменник, где  испаряется и направляется через турбину перед рециркуляцией обратно в систему. Технологии бинарного цикла дает  десятки мегаватт электроэнергии в США: Калифорнии, Неваде и на Гавайских островах.

Принцип получения энергии

Недостатки получения геотермальной энергии

На уровне полезности, геотермальные электростанции являются дорогостоящими, чтобы построить и работать. Для поиска подходящего места требуется дорогостоящее обследование скважин без гарантии попадания в продуктивную подземную горячую точку. Тем не менее, аналитики ожидают увеличения этой мощности почти вдвое в течение следующих шести лет.

Кроме того районы с высокой температурой подземного источника находятся в районах с активными геологохимическими вулканами. Эти «горячие точки» образовались на границах тектонических плит в местах, где кора достаточно тонкая. Тихоокеанский регион, часто называют как кольцо огня для многих вулканов, где  есть много горячих точек, в том числе на Аляске, Калифорнии и Орегоне. Невада имеет сотни горячих точек, охватывающих большую часть северной части США.

Есть и другие  сейсмически активные районы. Землетрясения и движение магмы позволяют воде циркулировать. В некоторых местах вода  поднимается к поверхности и  природные горячие источники и гейзеры происходят, такие, как на Камчатке. Вода в гейзерах Камчатки достигает  95° C.

Одна из проблем открытой системы гейзеров является выделение некоторых загрязнителей воздуха. Сульфид водорода — токсичный газ с очень узнаваемым запахом «тухлого яйца» — небольшое количество мышьяка и минералов, выпущенных с паром. Соль также может представлять экологическую проблему.

На геотермальных электростанциях расположенных в море значительное количество мешающей соли накапливается в трубах. В замкнутых системах нет выбросов и возвращается вся жидкость доведенная до поверхности.

Экономический потенциал энергоресурса

Сейсмически активные точки не являются единственными местами, где можно найти геотермальную энергию. Существует постоянный запас полезного тепла для целей прямого нагрева  на глубине везде от 4 метров до нескольких километров ниже поверхности практически в любом месте на земле. Даже земля на собственном заднем дворе или в местной школе имеет экономический потенциал в виде тепла, чтобы выдавать  в дом или другие здания.

Кроме того существует огромное количество тепловой энергии в сухих скальных образованиях очень глубоко под поверхностью (4 – 10 км).

Использование новой технологии может  расширить геотермальные системы, где люди смогут использовать это тепло для производства электроэнергии в гораздо большем масштабе, чем обычные технологии. Первые демонстрационные проекты этого принципа  получения  электричества показаны  в Соединенных Штатах и Австралии еще в 2013 году.

Если полный экономический потенциал геотермальных ресурсов может  быть реализован, то это будет представлять огромный источник электроэнергии для  производственных мощностей. Ученые предполагают, что обычные геотермальные источники имеют потенциал 38 000 МВт, который может производить 380 млн МВт электроэнергии в год.

Горячие сухие породы залегают на глубинах от 5 до 8 км везде под землей и на меньшей глубине в определенных местах. Доступ к этим ресурсам предполагает введение холодной воды, циркулирующей через горячие скальные породы и отвода нагретой воды. В настоящее время нет коммерческого применения этой технологии. Существующие технологии пока не позволяют восстанавливать тепловую энергию непосредственно из магмы, очень глубоко, но это самый мощный ресурс геотермальной энергии.

С комбинацией энергоресурсов и ее последовательности, геотермальная энергия может играть незаменимую роль как более чистая, более устойчивая энергетическая система.

2 место. Ветряные электростанции

Энергия ветра – один из самых популярных и перспективных источников для получения электричества.

Принцип работы ветрогенератора прост:

  • под воздействием силы ветра вращаются лопасти;
  • вращение передаётся на генератор;
  • генератор вырабатывает переменный ток;
  • полученная энергия обычно накапливается в аккумуляторах.

Мощность ветрогенератора зависит от размаха лопастей и его высоты. Поэтому их устанавливают на открытых территориях, полях, возвышенностях и в прибрежной зоне. Эффективнее всего работают установки с 3 лопастями и вертикальной осью вращения.

Чтобы сделать ветряк, не нужны глубокие познания в инженерии. Так, многие умельцы смогли себе позволить отключиться от общей электросети и перейти на альтернативную энергетику.


Vestas V-164 – самый мощный ветрогенератор на сегодня. Он вырабатывает 8 МВт.

Для производства электричества в промышленных масштабах используются ветровые электростанции, состоящие из множества ветряков. Крупнейшей является электростанция «Альта», расположенная в Калифорнии. Её мощность – 1550 МВт.

Биоэнергия

Биоэнергию производят из разных видов биологического сырья, которое получается после переработки биоотходов. Из твердых (щепа, пеллеты, древесина, солома), жидких (биоэтанол, биометанол, биодизель) и газообразных (биогаз, биоводород) видов биологического топлива путем термохимических (пиролиз, сжигание), физико-химических (биоконверсия), либо биохимических (анаэробное брожение биомассы) методов преобразования получают тепловую или электрическую энергию.

Преимущества и недостатки альтернативных источников энергии следует рассматривать в индивидуальном порядке, однако выделим несколько общих плюсов и минусов, характерных для всех источников.

Альтернативная энергетика в современной России

По сравнению с предыдущими годами альтернативная энергетика в России развивается быстрее, но не является преобладающей. Сегодня в стране наибольшая часть энергии добывается с помощью традиционных источников.

Солнечные электростанции

Солнечная электростанция на Урале

Потенциалом для добычи солнечной электроэнергии обладают южные районы страны, а также Западная, Восточная Сибирь и Дальний Восток. В России добывать энергию от Солнца перспективно, поэтому проекты с этим направлением получают государственную поддержку.

ГЭС и приливные электростанции

Россия активно использует водный потенциал для получения электроэнергии: по данным на 2017 год в стране имеется 15 электростанций с мощностью выше 1000 Мегаватт, и также сотни станций с меньшей мощностью. Энергия, выработанная на ГЭС, стоит в два раза меньше, чем выработанная на ТЭС.

Приливные станции требуют больших финансов, поэтому развитие этого направления в РФ не происходит. По прогнозам ученых ПЭС могли бы составить пятую часть добываемой электроэнергии в России.

Ветровые установки

Устанавливать генераторы с горизонтальной осью вращения в России невозможно из-за низкой скорости ветра. Однако часто применяются сооружения с вертикальной осью вращения.

Ветряная электростанция в Ульяновской области

По данным на 2018 год в России суммарная мощность ветровых установок составила 134 Мегаватт. Крупнейшая электростанция в Ульяновской области (мощность — 35 Мегаватт).

Геотермальные станции

В России действуют 5 геотермальных электростанций, три из которых расположены на Камчатке. По данным на 2016 год на этом полуострове ГеоЭС вырабатывает 40% потребляемой электроэнергии.

Применение биотоплива

В России также организовано производство топливо. При этом стране выгоднее разрабатывать твердое биотопливо, чем жидкое. Сейчас производство осуществляется на заводе во Владивостоке.

АЭС

Россия ведет добычу электроэнергии с помощью ядерной энергии и продолжает развиваться в этом направлении. Строятся новые станции, применяются новые способы добычи. По данным 2019 года в России действует 10 атомных электростанций. РФ занимает второе место в мире по мощности генерации электроэнергии с помощью АЭС, первенство в этой отрасли получила Китайская Народная Республика.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина

(Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое  путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы:

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время  из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

Сырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.

Ядерная  энергетика работает  больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.

Основным видом энергии, потребляемой во многих странах являются нефтепродукты, природный газ, уголь, ядерное и возобновляемое топливо.

Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но  обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии  и её использование дает представление о многих важных вопросах энергетики.

Первичная энергия

Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.

Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.

Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.

1 Гкал/час = 1,163 МВт

1 Вт = 859.8 кал/час

1 Вт = 3.412 BTU/час

BTU — британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.

В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.

На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и  возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).

Лучи Солнца

Посредством солнечных лучей на Землю переносится приблизительно 1000 кВт мощности ежегодно, что равно той энергии, которая выделяется при сгорании 100 л дизельного топлива. Это довольно большое количество, и его освоение занимает умы очень многих современных исследователей. Лучшим вариантом на сегодня для использования солнечного излучения являются солнечные батареи, часто объединенные по несколько десятков в большие блоки, так называемые панели. Принцип работы таких изделий простой — фотоны из лучей солнца, проходя через батареи, создают на полупроводниковом материале разность потенциалов, что и вызывает движение тока в электрической цепи.

Типичная батарея такого плана, имеющая площадь поверхности в 60–80 см2, при хорошей солнечной погоде может давать ток около 1 А, чего достаточно для зарядки мобильного телефона, прослушивания радио и других несложных задач. Если соорудить большую панель из 40–50 таких элементов, то можно получить, соответственно, источник энергии на 40–50 А тока и 20–25 В напряжения. Такой мощности будет достаточно уже и для более серьезных задач: освещения помещения, зарядки автомобильного аккумулятора. Чтобы покрыть нужды частного дома в электричестве, всю поверхность его крыши покрывают такими солнечными панелями.

Солнечная альтернативная электроэнергетика — неплохой вариант добычи электричества, но способ имеет несколько недостатков, главными среди которых можно назвать высокую стоимость организации своей электростанции, а также полную зависимость от погодных условий: в случае пасмурной погоды вырабатываемой мощности будет очень мало.

Ветроэнергетика

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

Ядерная

Альберт Эйнштейн сказал нам, что грань между материей и энергией нечеткая. Энергия будущего может быть произведена путем разделения или слияния ядер — процессы известные как ядерные реакции деления и образования более тяжелых ядер где выделяется термоядерная энергия.

Ядерное атомное деление высвобождает вредную радиацию и производит большое количество радиоактивных материалов, которые могут оставаться активными в течение тысяч лет и могут разрушать целые экосистемы в случае утечки. Существует также озабоченность по поводу того, что ядерный материал может быть использован в оружии.

В настоящее время большинство атомных электростанций используют деление, и для производства требуется поддержание необходимых температур.

Также известно природное явление, как сонолюминесценция.

Сонолюминесценция может однажды стать средством обладающим гигантскими ядерными и термоядерными реакторами в стакане жидкости.

Сонолюминесценция относится к вспышке света, когда специальные жидкости создают высокоэнергетические звуковые волны. Звуковые волны разрывают жидкость и производят крошечные пузырьки, которые быстро расширяются, а затем сильно разрушаются

Свет производится в процессе, но что более важно, внутренности взрывающихся пузырьков достигают чрезвычайно высоких температур и давлений. Ученые предполагают что этого может быть достаточно для ядерного синтеза

Ученые также экспериментируют с методами создания управляемого ядерного синтеза, ускоряя «тяжелые» ионы водорода в мощном электрическом поле.

Плюсы и минусы внедрения автономного питания

Неоспоримыми достоинствами установки индивидуальной электросети считаются:

  • независимость от магистрального электроснабжения;
  • минимальная себестоимость одного киловатта электротока;
  • стабильность электрического снабжения;

Наличие автономного источника питания в доме позволяет бесперебойно получать электроток даже тогда, когда другие временно лишены такой возможности из-за проведения ремонта на ЛЭП.

Недостатки:

  • высокая цена оборудования;
  • расходы по обслуживанию системы оплачивают сами пользователи;
  • для размещения независимого комплекса требуется пространство.

Вышеописанные положительные и отрицательные стороны автономного электроснабжения касаются всех разновидностей существующих систем. При этом у каждой из них дополнительно есть свои индивидуальные достоинства, недостатки. Последнее в некоторой мере влияет на вырабатываемую электрическую мощность за единицу времени, величину расходов на ее производство.


Используя автономное энергообеспечение, владелец дома становится полностью независимым в плане получения электроэнергии для потребленияИсточник elektrikexpert.ru

Требования к домашним независимым комплексам

Прежде чем приобретать оборудование для обеспечения жилища электроэнергией, следует подсчитать ее нужный объем, который будет покрывать потребности всей бытовой техники, прочих домашних электрических устройств. Для этого проводится расчет общей мощности всех имеющихся электропотребителей. Самые распространенные из них такие:

  • холодильная, морозильная камеры;
  • отопительная система;
  • кондиционер;
  • бытовые приборы;
  • насос (для доставки в здание воды из скважины);
  • электроинструмент.

Базовую мощность любого агрегата можно узнать их прилагаемой к нему производителем инструкции. Для разных приборов такой показатель индивидуальный. Но все устройства непременно требуют стабильной подачи электроэнергии, для них недопустимы перепады напряжения.

Полученные данные суммируют, в результате чего узнают, сколько приблизительно киловатт-часов должна ежедневно производить автономная электросистема. Это число рекомендуется увеличить на 20-25%, чтоб иметь небольшой запас для повышения потребления энергии.

Общее потребление энергии в доме зависит от используемых электроприборов, их моделей, а также постоянного количества жильцовИсточник dagzhkh.ru

Электростанции

Большая часть электричества, используемого в мире производится от электростанций, которые сжигают ископаемое топливо для создания пара. Основным видом топлива для электростанций является уголь, потому что он позволяет большое количество электроэнергии производить в одном месте.

С помощью угля в настоящее время вырабатывается свыше 50 процентов электричества

Кратко о сути возобновляемых источников электроэнергии

Есть другие способы генерации электричества с использованием природных ресурсов, которые могут быть заменены или возобновлены без ущерба окружающей среды или способствовать парниковому эффекту.

Возобновляемые источники энергии используются для создания 30 процентов электричества.

Из этих источников возобновляемой энергии гидроэнергетика является крупным донором, обеспечивая около 10 процентов общего объема электроэнергии.

15% обеспечивают атомные электростанции.

При этом доля атомных электростанций в мире различна от 77 % во Франции до 2,5 % в Китае.

Конечно большинство людей хотели бы видеть экологическое сочетание превращающееся в электрические ресурсы, но в настоящее время источники ископаемого топлива являются основой электроэнергии в мире. Сочетание и доля источников электрической силы с течением времени видоизменяются и появляются необычные источники энергии.

Гидро

Электричество из воды накапливается в огромных плотинах. Сила, созданная водой из этих плотин превращается в электричество гидро электрическими турбинами и генераторами. Самые известные источники гидроэлектрической энергии находятся на крупных реках. Это дешевле, чем добыча ископаемого топлива и не способствует парниковому эффекту.

Солнце

При генерации электроэнергии с помощью солнца предотвращает выброс в атмосферу парниковых газов.

Ветер

Перемещение воздуха, который создается, когда солнце нагревает и охлаждение воздуха движет его. Это вызывает ветер. Через века люди научились использовать силу ветра. Как солнце она может также использоваться для создания электроэнергии. Ветер генерирует менее 1% электроэнергии в мире, но больше ветровых электростанций строятся каждый год.

Биомасса

Энергия, которая поступает из свалки – или мусорные свалки. Она включает в себя образование горючего газа и тепла от материи животных и растений. Свалочный газ создается, когда выбрасываются отходы и начинается загнивание (или разложение) в земле. Этот газ, как правило, просто будет просачиваться через землю в атмосферу, способствуя экологическим проблемам, как парниковый эффект. Однако может быть захвачен и обрабатываться для создания электроэнергии. Газ собирается, сушится (чтобы избавиться от воды) а затем фильтруется (чтобы избавиться от любых отходов и частиц). Затем подается через трубы к газовому генератору, который сжигает газ для создания электроэнергии.

Геотермальная энергия

Ресурсы от тепла земли. Она была использована тысяч лет в некоторых странах для горячей воды, отопления и приготовления пищи. Она также может генерировать электричество с помощью пара производимого из тепла, найденного под поверхностью земли. Это не распространено во многих странах, но хотя экспериментально геотермальная электроэнергия изучается в малонаселенных районах и используется в некоторых частях Новой Зеландии, Европе, Камчатке (Россия), а Исландия получает более 50 % своих энергетических ресурсов из геотемальных видов.

Источники электрической энергии в настоящее время являются неотъемлемой частью нашей жизни. Многие вещи работают только с помощью электричества и значение которой мы резко не изменим. Эти изменения не будут восприниматься как положительные большинством людей. Для поддержки технологии, лежащей в производстве электричества с использованием возобновляемых и невозобновляемых ресурсов работают ученые из многих областей исследования, в том числе химии, геологии, физики и биологии.

Аргументы в пользу более возобновляемых источников электрической энергии включают в себя:

Необходимость сохранения энергетических ресурсов для будущего

Угроза повышения парникового газа индуцированного изменением климата.

Противоположные аргументы для использования невозобновляемых ресурсов включают:

Для использования этих ресурсов уже существует хорошо развитая технология

Неспособность альтернатив для обеспечения базовой нагрузки мощности для бытового и промышленного использования

Стоимость является относительно низкой для выработки электричества с невозобновляемых ресурсов.

Что такое нетрадиционные источники энергии

Перспективной задачей в энергетическом комплексе 21 века является использование и внедрение возобновляемых источников энергии. Это позволит снизить нагрузку на экологическую систему планеты. Применение традиционных источников негативно влияет на экологию и приводит к исчерпанию земных недр. К ним относятся:

1. Невозобновляемые:

  • уголь;
  • природный газ;
  • нефть;
  • уран.

2. Возобновляемые:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

  • древесина;
  • гидроэнергетика.

Альтернативная энергетика – система новых способов и методов получения, передачи и применения энергии, которые используются слабо, однако являются выигрышными для окружающей среды. 

Альтернативные источники энергии (АИЭ) – вещества и процессы, которые существуют в природной среде и дают возможность получать необходимую энергию.

Тепловые насосы

Следующий вариант из категории «альтернативные виды энергии» — энергия из недр земли. Для частного дома – это идеальный вариант. Он простой, эффективный и экономичный. Для этого на участке около дома бурится скважина (чем глубже, тем лучше), куда устанавливается тепловой насос.

Подземные воды имеют всегда положительную температуру. При охлаждении насосом этой воды, выделяется энергия, которую и приходиться использовать. Но у некоторых может возникнуть вопрос, как же работает насос, ведь для него также необходима электрическая энергия? Все правильно, но данная установки имеет определенное соотношение потребленной энергии и выделенной, которая находится вот в такой зависимости – 1:6. Так что эффективность налицо.

Что можно использовать в частном доме

Получение энергии с помощью альтернативных источников возможно не только для компаний и государства. Существуют различные установки и приборы, помогающие вырабатывать электричество нетрадиционным путем. Альтернативные способы получения энергии помогают экономить на счетах и в случае аварийного отключения электричества не остаться без света.

Солнечные панели

Панели установлены на крыше

Солнечные панели помогут получить экологичную энергию для дома. Для покупки вам нужно рассчитать необходимую мощность и выбрать место для крепления. Покупка и установка фотоэлементов оправдана и окупается в будущем.

Солнечные коллекторы

Солнечные коллекторы нагреваются на солнце, направляют накопленное тепло к воде и нагревают ее. Таким образом, это устройство обеспечивает отопление и горячую воду в любой сезон.

Ветрогенераторы

Генераторы аккумулируют энергию, а впоследствии потребляется бытовыми приборами. Обычно устанавливают несколько устройств, которые попеременно включаются в случае аварийного отключения.

Тепловые насосы

Тепловые насосы в любое время года нагревают помещение до необходимой температуры. Большинство из них оборудованы обратной функцией — охлаждением, что будет кстати летом. В качестве источника может использоваться вода, ветер или тепло земли.

Производство биогаза

Домашнее производство биогаза позволяет заменить применение ископаемого топлива в быту на его более экологичный и дешевый аналог. Биогазовую установку можно купить или построить самостоятельно.

Мини гидроэлектростанция

Мини ГЭС — это небольшие станции, которые производят электричество для отдельного дома. Используют эту установку в качестве основного или резервного источника энергии. Портативные гидроэлектростанции — альтернатива для удаленных и труднодоступных районов.

Прочие возможности

Существуют и более редкие возможности, однако их дорого реализовывать. Например, инфракрасные излучатели для обогрева помещения. На мировом рынке можно встретить водородные котлы, обеспечивающие тепло за счет химических реакций между кислородом и водородом.

Солнечная энергия

Солнечная энергия не требует никакого дополнительного топлива и загрязнения не происходит. Солнечный свет можно концентрировать в виде тепла или преобразовать в электричество используя фотоэлектрический или фотовольтаический эффект через синхронизированные зеркала которые отслеживают движение солнца через небо. Ученые также разработали методы использования солнечной энергии будущего для замены газового двигателя нагревом водородного газа в резервуаре, который расширяется и приводит в движение генератор.

К недостаткам солнечной энергии можно отнести высокие начальные затраты, а также потребность в больших пространствах. Также для большинства альтернатив выход солнечной энергии будущего подвержен капризам загрязнения воздуха и погоды, которые могут блокировать солнечный свет.

Назначение альтернативных источников энергии

Являясь целиком возобновляемым ресурсом или явлением, альтернативный источник энергии полностью заменяет собой традиционный, работающий на угле, природном газе или нефти. Различные источники энергии человечество использует давно, но возросшая масштабность их применения наносит невосполнимый урон окружающей среде. Ведет к выбросам в атмосферу большого количества углекислого газа. Провоцирует парниковый эффект и способствует глобальному повышению температуры, глобальному потеплению. Мечтая о практически неисчерпаемом или полностью возобновляемом энергоресурсе, люди заняты поиском перспективных способов получения, использования и последующей передачи энергии

Конечно, беря во внимание экологический аспект и экономичность новых, нетрадиционных источников

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector